6533b838fe1ef96bd12a3dac

RESEARCH PRODUCT

Behavior of gap solitons in anharmonic lattices

Jean-marie BilbaultAurélien Serge Tchakoutio NguetchoGuy Merlin Nkeumaleu

subject

Dynamical systems theory[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]01 natural sciencesFrenkel-Kontorova Model010305 fluids & plasmasPlanar[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph]Quartic functionLattice (order)Dimensional Diatomic Lattice0103 physical sciences[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph]010306 general physicsBifurcationPhysicsAnharmonicity[ PHYS.MECA.MEFL ] Physics [physics]/Mechanics [physics]/Mechanics of the fluids [physics.class-ph]Systems[ PHYS.PHYS.PHYS-PLASM-PH ] Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph]Nonlinear systemBreathersClassical mechanics[ PHYS.MPHY ] Physics [physics]/Mathematical Physics [math-ph]SolitonDefectAtomic ChainPotentials

description

International audience; Using the theory of bifurcation, we provide and find gap soliton dynamics in a nonlinear Klein-Gordon model with anharmonic, cubic, and quartic interactions immersed in a parametrized on-site substrate potential. The case of a deformable substrate potential allows theoretical adaptation of the model to various physical situations. Nonconvex interactions in lattice systems lead to a number of interesting phenomena that cannot be produced with linear coupling alone. By investigating the dynamical behavior and bifurcations of solutions of the planar dynamical systems, we derive a variety of exotic solutions corresponding to the phase trajectories under different parameter conditions. Moreover, we demonstrate how and why traveling waves lose their smoothness and develop into solutions with compact support or breaking.

10.1103/physreve.96.022207https://hal-univ-bourgogne.archives-ouvertes.fr/hal-01620259