6533b838fe1ef96bd12a3e2e
RESEARCH PRODUCT
Reducing effects of aberration in 3D fluorescence imaging using wavefront coding with a radially symmetric phase mask.
Chrysanthe PrezaNurmohammed PatwaryGenaro SaavedraSharon V. Kingsubject
WavefrontPhysicsSpatial filterbusiness.industryImage processing02 engineering and technologyIterative reconstruction021001 nanoscience & nanotechnology01 natural sciencesAtomic and Molecular Physics and Optics010309 opticsSpherical aberrationOptics0103 physical sciencesSensitivity (control systems)0210 nano-technologybusinessImage restorationWavefront codingdescription
In this work, a wavefront encoded (WFE) imaging system built using a squared cubic phase mask, designed to reduce the sensitivity of the imaging system to spherical aberration, is investigated. The proposed system allows the use of a space-invariant image restoration algorithm, which uses a single PSF, to restore intensity distribution in images suffering aberration, such as sample–induced aberration in thick tissue. This provides a computational advantage over depth-variant image restoration algorithms developed previously to address this aberration. Simulated PSFs of the proposed system are shown to change up to 25% compared to the 0 µm depth PSF (quantified by the structural similarity index) over a 100 µm depth range, while the conventional system PSFs change up to 84%. Results from experimental test-sample images show that restoration error is reduced by 29% when the proposed WFE system is used instead of the conventional system over a 30 µm depth range.
year | journal | country | edition | language |
---|---|---|---|---|
2016-07-14 | Optics express |