6533b838fe1ef96bd12a3e55
RESEARCH PRODUCT
Resistive switching in microscale anodic titanium dioxide-based memristors
F. Di FrancoRoberto MacalusoMonica SantamariaGiuseppe LulloVincenzo AglieriU. Lo CiceroAndrea ZafforaMauro Moscasubject
Materials scienceOxideNanotechnology02 engineering and technologyMemristorCondensed Matter PhysicAnodizing01 natural sciencesRRAMSettore ING-INF/01 - Elettronicalaw.inventionchemistry.chemical_compoundlaw0103 physical sciencesTiO2General Materials ScienceResistive switchingElectrical and Electronic EngineeringMicroscale chemistryAsymmetric hysteresi010302 applied physicsAnodizingbusiness.industryMemristor021001 nanoscience & nanotechnologyCondensed Matter PhysicsAnodeHysteresisSettore ING-IND/23 - Chimica Fisica ApplicatachemistryResistive switchingTitanium dioxideOptoelectronicsMaterials Science (all)0210 nano-technologybusinessdescription
Licence CC BY-NC-ND The potentiality of anodic TiO2 as an oxide material for the realization of resistive switching memory cells has been explored in this paper. Cu/anodic-TiO2/Ti memristors of different sizes, ranging from 1 × 1 μm2 to 10 × 10 μm2 have been fabricated and characterized. The oxide films were grown by anodizing Ti films, using three different process conditions. Measured IV curves have shown similar asymmetric bipolar hysteresis behaviors in all the tested devices, with a gradual switching from the high resistance state to the low resistance state and vice versa, and a R_OFF/R_ON ratio of 80 for the thickest oxide film devices.
year | journal | country | edition | language |
---|---|---|---|---|
2018-01-01 |