Search results for "Memristor"

showing 10 items of 43 documents

Custom measurement system for memristor characterisation

2021

Abstract A cheap, compact and customisable characterisation system for memristor devices, working between ± 10 V, is presented. SPICE (Simulation Program with Integrated Circuit Emphasis) simulations are performed to verify the circuit feasibility and a proper software is developed to drive the system. The potentiality of the realised system is tested by performing several electrical measurements on both Cu/HfO2/Pt memristors and two-terminals commercial devices.

010302 applied physicsComputer sciencebusiness.industrySystem of measurementSpiceEmphasis (telecommunications)02 engineering and technologyMemristorIntegrated circuit021001 nanoscience & nanotechnologyCondensed Matter PhysicsSettore ING-INF/01 - Elettronica01 natural sciencesElectronic Optical and Magnetic Materialslaw.inventionSoftwarelaw0103 physical sciencesMaterials ChemistryElectronic engineeringElectrical measurementsElectrical and Electronic EngineeringMemristor ReRAM electrical characterization system current compliance endurance retention0210 nano-technologybusinessSolid-State Electronics
researchProduct

Resistive communications based on neuristors

2017

Memristors are passive elements that allow us to store information using a single element per bit. However, this is not the only utility of the memristor. Considering the physical chemical structure of the element used, the memristor can function at the same time as memory and as a communication unit. This paper presents a new approach to the use of the memristor and develops the concept of resistive communication.

010302 applied physicsFOS: Computer and information sciencesResistive touchscreenCommunication unitHardware_MEMORYSTRUCTURESComputer science020208 electrical & electronic engineeringComputer Science - Emerging TechnologiesSingle element02 engineering and technologyFunction (mathematics)Memristor01 natural scienceslaw.inventionEmerging Technologies (cs.ET)Unified Modeling LanguagelawPhysical chemical0103 physical sciences0202 electrical engineering electronic engineering information engineeringElectronic engineeringElement (category theory)computercomputer.programming_language
researchProduct

Measurement of the activation energies of oxygen ion diffusion in yttria stabilized zirconia by flicker noise spectroscopy

2019

The low-frequency noise in a nanometer-sized virtual memristor consisting of a contact of a conductive atomic force microscope (CAFM) probe to an yttria stabilized zirconia (YSZ) thin film deposited on a conductive substrate is investigated. YSZ is a promising material for the memristor application since it is featured by high oxygen ion mobility, and the oxygen vacancy concentration in YSZ can be controlled by varying the molar fraction of the stabilizing yttrium oxide. Due to the low diameter of the CAFM probe contact to the YSZ film (similar to 10nm), we are able to measure the electric current flowing through an individual filament both in the low resistive state (LRS) and in the high r…

010302 applied physicsResistive touchscreenMaterials sciencePhysics and Astronomy (miscellaneous)business.industryMemristor Noise induced phenomenaOxide02 engineering and technologySubstrate (electronics)021001 nanoscience & nanotechnology01 natural sciencesNoise (electronics)chemistry.chemical_compoundchemistry0103 physical sciencesOptoelectronicsFlicker noiseThin filmElectric current0210 nano-technologybusinessYttria-stabilized zirconia
researchProduct

Electrochemical polymerization of ambipolar carbonyl-functionalized indenofluorene with memristive properties

2019

Abstract Carbonyl-functionalized indenofluorene was electropolymerized with a high faradaic efficiency of 85% and the solid state properties of the resulting polymeric thin films were investigated. They displayed modular optical properties depending on their oxidation state. The approach used for inorganic semiconductors was applied to polyindeonofluorene derivative. Mott-Schottky analysis evidenced a switching from p-type to n-type electrical conduction, suggesting an ambipolar behaviour of the polymer. As an application, flexible organic memristors were fabricated and resistive switching properties were observed.

02 engineering and technology010402 general chemistry01 natural sciencesSettore ING-INF/01 - ElettronicaOrganic memristorsInorganic Chemistrychemistry.chemical_compoundOxidation stateElectrochemical polymerizationElectrical and Electronic EngineeringPhysical and Theoretical ChemistryThin filmSpectroscopychemistry.chemical_classificationAmbipolar diffusionbusiness.industryOrganic ChemistryPolymerSettore CHIM/06 - Chimica Organica021001 nanoscience & nanotechnologyIndenofluorene derivatives Electrochemical polymerization Organic semiconductors Organic memristorsAtomic and Molecular Physics and Optics0104 chemical sciencesElectronic Optical and Magnetic MaterialsOrganic semiconductorSemiconductorChemical engineeringchemistryOrganic semiconductors0210 nano-technologybusinessFaraday efficiencyDerivative (chemistry)Indenofluorene derivatives
researchProduct

Memristors in Nonlinear Network : Application to Information (Signal and Image) Processing

2021

Memristor is a two-terminal nonlinear dynamic electronic device. Typically, it is a passive nano-device whose conductivity is controlled by the flux, time-integral of the voltage across its terminals, or by the charge, time-integral of the current flowing through it, and it presents interesting features for versatile applications. This thesis considers memristor use as a neighborhood connection for 2D cellular nonlinear or neural network (CNN), essentially for information (image and signal) processing and electronic prosthesis. We develop a model of the memristor based 2D cellular nonlinear networks CNNs compatible to image applications by incorporating memristor in the adjacent neighborhoo…

BilateralityMemristor and modelsSignal and image processingRéseau 2 dimensions[INFO.INFO-OH]Computer Science [cs]/Other [cs.OH]Bilatéralité2 dimensional networks[INFO.INFO-OH] Computer Science [cs]/Other [cs.OH]Propagation (réseau 1D)Fitzhugh-Nagumo cellsTraitement du signal et de l'imageFitzhugh-Nagumo cellulesPropagation (1D network)Memristor et models
researchProduct

Theory of Heterogeneous Circuits With Stochastic Memristive Devices

2022

We introduce an approach based on the Chapman-Kolmogorov equation to model heterogeneous stochastic circuits, namely, the circuits combining binary or multi-state stochastic memristive devices and continuum reactive components (capacitors and/or inductors). Such circuits are described in terms of occupation probabilities of memristive states that are functions of reactive variables. As an illustrative example, the series circuit of a binary memristor and capacitor is considered in detail. Some analytical solutions are found. Our work offers a novel analytical/numerical tool for modeling complex stochastic networks, which may find a broad range of applications.

Computer scienceContinuum (topology)Binary numberCapacitorsMemristorSwitching circuitsTopologyInductorSeries and parallel circuitslaw.inventionComputer Science::Hardware ArchitectureCapacitorRange (mathematics)Mathematical modelComputer Science::Emerging TechnologiesStochastic processesIntegrated circuit modelinglawHardware_INTEGRATEDCIRCUITSElectrical and Electronic EngineeringMemristorsSwitchesElectronic circuitIEEE Transactions on Circuits and Systems II: Express Briefs
researchProduct

Potential implementation of reservoir computing models based on magnetic skyrmions

2018

Reservoir Computing is a type of recursive neural network commonly used for recognizing and predicting spatio-temporal events relying on a complex hierarchy of nested feedback loops to generate a memory functionality. The Reservoir Computing paradigm does not require any knowledge of the reservoir topology or node weights for training purposes and can therefore utilize naturally existing networks formed by a wide variety of physical processes. Most efforts prior to this have focused on utilizing memristor techniques to implement recursive neural networks. This paper examines the potential of skyrmion fabrics formed in magnets with broken inversion symmetry that may provide an attractive phy…

Distributed computingMathematicsofComputing_NUMERICALANALYSISFOS: Physical sciencesGeneral Physics and Astronomy02 engineering and technologyMemristor01 natural scienceslaw.inventionlawMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciences010306 general physicsTopology (chemistry)PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsArtificial neural networkHierarchy (mathematics)SkyrmionReservoir computingPhysik (inkl. Astronomie)021001 nanoscience & nanotechnologylcsh:QC1-999Recurrent neural networkNode (circuits)0210 nano-technologylcsh:PhysicsAIP Advances
researchProduct

Transient dynamics of pulse-driven memristors in the presence of a stable fixed point

2019

Abstract Some memristors are quite interesting from the point of view of dynamical systems. When driven by narrow pulses of alternating polarities, their dynamics has a stable fixed point, which may be useful for future applications. We study the transient dynamics of two types of memristors characterized by a stable fixed point using a time-averaged evolution equation. Time-averaged trajectories of the Biolek window function memristor and resistor-threshold type memristor circuit (an effective memristor) are determined analytically, and the times of relaxation to the stable fixed point are found. Our analytical results are in perfect agreement with the results of numerical simulations.

FOS: Computer and information sciencesDynamical systems theoryFOS: Physical sciencesComputer Science - Emerging TechnologiesMemristorFixed point01 natural sciencesWindow function010305 fluids & plasmaslaw.inventionMemristive systemComputer Science::Hardware ArchitectureComputer Science::Emerging TechnologieslawStablefixed pointMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesAttractorStatistical physics010306 general physicsPhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsAttractorMemristorResistance switching memoryCondensed Matter PhysicsAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsPulse (physics)Emerging Technologies (cs.ET)Relaxation (physics)Transient (oscillation)Physica E-Low-Dimensional Systems & Nanostructures
researchProduct

Modeling Networks of Probabilistic Memristors in SPICE

2021

Efficient simulation of stochastic memristors and their networks requires novel modeling approaches. Utilizing a master equation to find occupation probabilities of network states is a recent major departure from typical memristor modeling [Chaos, solitons fractals 142, 110385 (2021)]. In the present article we show how to implement such master equations in SPICE – a general purpose circuit simulation program. In the case studies we simulate the dynamics of acdriven probabilistic binary and multi-state memristors, and dc-driven networks of probabilistic binary and multi-state memristors. Our SPICE results are in perfect agreement with known analytical solutions. Examples of LTspice code are…

FOS: Computer and information sciencesHardware_MEMORYSTRUCTURESCondensed Matter - Mesoscale and Nanoscale PhysicsFOS: Physical sciencesComputer Science - Emerging TechnologiesComputer Science::Hardware ArchitectureEmerging Technologies (cs.ET)Computer Science::Emerging TechnologiesmemristorsspicenetworksMesoscale and Nanoscale Physics (cond-mat.mes-hall)lcsh:Electrical engineering. Electronics. Nuclear engineeringprobabilistic computinglcsh:TK1-9971Radioengineering
researchProduct

Probabilistic Memristive Networks: Application of a Master Equation to Networks of Binary ReRAM cells

2020

Abstract The possibility of using non-deterministic circuit components has been gaining significant attention in recent years. The modeling and simulation of their circuits require novel approaches, as now the state of a circuit at an arbitrary moment in time cannot be predicted deterministically. Generally, these circuits should be described in terms of probabilities, the circuit variables should be calculated on average, and correlation functions should be used to explore interrelations among the variables. In this paper, we use, for the first time, a master equation to analyze the networks composed of probabilistic binary memristors. Analytical solutions of the master equation for the ca…

FOS: Computer and information sciencesProbabilistic computingComputer scienceGeneral MathematicsGeneral Physics and AstronomyBinary numberFOS: Physical sciencesComputer Science - Emerging TechnologiesMemristorTopologylaw.inventionModeling and simulationComputer Science::Hardware ArchitectureComputer Science::Emerging TechnologieslawMaster equationMesoscale and Nanoscale Physics (cond-mat.mes-hall)Probabilistic logicElectronic circuitCondensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale PhysicsApplied MathematicsProbabilistic logicMaterials Science (cond-mat.mtrl-sci)Statistical and Nonlinear PhysicsMoment (mathematics)Emerging Technologies (cs.ET)State (computer science)NetworksMemristors
researchProduct