6533b838fe1ef96bd12a44c9

RESEARCH PRODUCT

Dipoles in 4,12,4-graphyne

Shamsa BibiRan JiaRan JiaDong-chun YangRoberts I. EglitisYong-bo TanHong-xing Zhang

subject

Materials scienceGeneral Physics and Astronomy02 engineering and technologySurfaces and InterfacesGeneral ChemistryElectronic structure010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesPiezoelectricityMolecular physics0104 chemical sciencesSurfaces Coatings and FilmsGraphyneDipoleElectric fieldDirect and indirect band gapsDensity functional theory0210 nano-technologyAbsorption (electromagnetic radiation)

description

Abstract In present work, B-N pairs as dipole source were introduced into 4,12,4-graphyne. According to the density functional theory (DFT) simulations, the electronic configurations of the doped 4,12,4-graphyne systems were significantly modified owing to the built-in electric fields caused by the B-N dipoles. Different B-N concentrations and arrangements can alter the electronic structure of 4,12,4-graphyne. Consequently, an obvious in-plane piezoelectricity can also be induced. Moreover, the direct band gap can be delicately modulated from 150 meV to 660 meV at PBE level. The B-N dipoles can also greatly enhance the light absorption instead of shifting the absorption region. According to this study, the manipulation of the dipoles in 2D carbon materials is an effective way to acquire the functional materials with some desired physical properties.

https://doi.org/10.1016/j.apsusc.2021.148991