6533b838fe1ef96bd12a46d7
RESEARCH PRODUCT
On the variations of acoustic absorption peak with particle velocity in micro-perforated panels at high level of excitation.
Thomas DupontRostand TayongPhilippe Leclairesubject
Absorption (acoustics)Materials scienceAcoustics and UltrasonicsAcoustics[ PHYS.COND.CM-MS ] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]FOS: Physical sciencesPhysics - Classical PhysicsPolypropylenes01 natural sciences010305 fluids & plasmasAbsorption[SPI]Engineering Sciences [physics]symbols.namesakeMotionArts and Humanities (miscellaneous)0103 physical sciencesPressureParticle velocitySound pressure010301 acoustics[ PHYS.MECA.ACOU ] Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph][SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph][ SPI.ACOU ] Engineering Sciences [physics]/Acoustics [physics.class-ph]Construction MaterialsAirFluid Dynamics (physics.flu-dyn)Classical Physics (physics.class-ph)Reynolds numberPhysics - Fluid DynamicsAcousticsModels TheoreticalSound intensity[PHYS.MECA.ACOU]Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph]Mach numberFlow velocityNonlinear DynamicsSteelFacility Design and Construction[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]symbolsLinear ModelsAcoustic impedanceNoisePorositydescription
The acoustic behavior of micro-perforated panels (MPP) is studied theoretically and experimentally at high level of pressure excitation. A model based on Forcheimer's regime of flow velocity in the perforations is proposed. This model is valid at relatively high Reynolds numbers and low Mach numbers. The experimental method consists in measuring the acoustical pressure at three different positions in an impedance tube, the two measurement positions usually considered in an impedance tube and one measurement in the vicinity of the rear surface of the MPP. The impedance tube is equipped with a pressure driver instead of the usual loudspeaker and capable of delivering a high sound pressure level up to 160 dB. Several MPP specimens made out of steel and polypropylene were tested. Measurements using random noise or sinusoidal excitation in a frequency range between 200 and 1600 Hz were carried out on MPPs backed by air cavities. It was observed that the maximum of absorption can be a positive or a negative function of the flow velocity in the perforations. This suggests the existence of a maximum of absorption as a function of flow velocity. This behavior was predicted by the model and confirmed experimentally.
year | journal | country | edition | language |
---|---|---|---|---|
2010-01-01 | The Journal of the Acoustical Society of America |