6533b838fe1ef96bd12a4779

RESEARCH PRODUCT

A Mönch type fixed point theorem under the interior condition

Cristóbal GonzálezEnrique Llorens-fusterAntonio Jiménez-melado

subject

Discrete mathematicsMathematics::Functional AnalysisGeneralizationApplied MathematicsInterior conditionMathematics::Analysis of PDEsBanach spaceFixed-point theoremType (model theory)Mönch fixed point theoremBanach spacesStrictly star-shaped setLeray–Schauder conditionBoundary value problemAnalysisMathematics

description

Abstract In this paper we show that the well-known Monch fixed point theorem for non-self mappings remains valid if we replace the Leray–Schauder boundary condition by the interior condition. As a consequence, we obtain a partial generalization of Petryshyn's result for nonexpansive mappings.

10.1016/j.jmaa.2008.11.032http://dx.doi.org/10.1016/j.jmaa.2008.11.032