6533b838fe1ef96bd12a48e0

RESEARCH PRODUCT

Wavelength-Selective Softening of Hydrogel Networks.

Anja S. GoldmannHendrik FrischPhong A. TranVinh X. TruongJessica L PellothAndreas WaltherChristopher Barner-kowollik

subject

Materials scienceLightCell SurvivalNanotechnologyBiocompatible MaterialsCell LinePolyethylene Glycolschemistry.chemical_compoundMiceBimaneTissue engineeringCell AdhesionAnimalsGeneral Materials ScienceNitrobenzenesBioelectronicsDrug CarriersMechanical Engineeringtechnology industry and agricultureHydrogelsChromophoreBridged Bicyclo Compounds HeterocyclicchemistryMechanics of MaterialsDrug deliverySelf-healing hydrogelsBiosensorEthylene glycol

description

Photoresponsive hydrogels hold key potential in advanced biomedical applications including tissue engineering, regenerative medicine, and drug delivery, as well as intricately engineered functions such as biosensing, soft robotics, and bioelectronics. Herein, the wavelength-dependent degradation of bio-orthogonal poly(ethylene glycol) hydrogels is reported, using three selective activation levels. Specifically, three chromophores are exploited, that is, ortho-nitrobenzene, dimethyl aminobenzene, and bimane, each absorbing light at different wavelengths. By examining their photochemical action plots, the wavelength-dependent reactivity of the photocleavable moieties is determined. The wavelength-selective addressability of individual photoreactive units is subsequently translated into hydrogel design, enabling wavelength-dependent cleavage of the hydrogel networks on-demand. Critically, this platform technology allows for the fabrication of various hydrogels, whose mechanical properties can be fine-tuned using different colors of light to reach a predefined value, according to the chromophore ratios used. The softening is shown to influence the spreading of pre-osteoblastic cells adhering to the gels as a demonstration of their potential utility. Furthermore, the materials and photodegradation processes are non-toxic to cells, making this platform attractive for biomaterials engineering.

10.1002/adma.202102184https://pubmed.ncbi.nlm.nih.gov/34365684