6533b838fe1ef96bd12a5104
RESEARCH PRODUCT
Bag-of-word based brand recognition using Markov Clustering Algorithm for codebook generation
Aldric ManceauYannick BenezethAurélie Bertauxsubject
Computer scienceInitialization02 engineering and technologyMachine learningcomputer.software_genre[ INFO.INFO-CV ] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV][INFO.INFO-CV] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]0502 economics and business0202 electrical engineering electronic engineering information engineeringVisual WordCluster analysisRepresentation (mathematics)Markov chainbusiness.industry05 social sciencesCodebook[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]Pattern recognitionIdentity (object-oriented programming)050211 marketing020201 artificial intelligence & image processingArtificial intelligencebusinessAlgorithmcomputerWord (computer architecture)description
International audience; In order to address the issue of counterfeiting online, it is necessary to use automatic tools that analyze the large amount of information available over the Internet. Analysis methods that extract information about the content of the images are very promising for this purpose. In this paper, a method that automatically extract the brand of objects in images is proposed. The method does not explicitly search for text or logos. This information is implicitly included in the Bag-of-Words representation. In the Bag-of-Words paradigm, visual features are clustered to create the visual words. Despite its shortcomings, k-means is the most widely used algorithm. With k-means, the selection of the number of visual words is critical. In this paper, another clustering algorithm is proposed. Markov Cluster Algorithm (MCL) is very fast, does not require an arbitrary selection of the number of classes and does not rely on random initialization. First, we demonstrate in this paper that MCL is competitive to k-means with a number of cluster experimentally selected. Second, we show that it is possible to identify brand from objects in images without previous knowledge about visual identity of these brands.
year | journal | country | edition | language |
---|---|---|---|---|
2015-09-01 |