6533b838fe1ef96bd12a521b

RESEARCH PRODUCT

Buckling and nonlinear dynamics of elastically coupled double-beam systems

Elena VukClaudio GiorgiIvana Bochicchio

subject

Buckling; Double-beam system; Global attractor; Nonlinear oscillations; Steady states; Mechanics of Materials; Mechanical Engineering; Applied MathematicsSteady statesBucklingApplied MathematicsMechanical Engineering010102 general mathematicsEigenfunctionDouble-beam system01 natural sciencesGlobal attractorNonlinear oscillations010101 applied mathematicsVibrationNonlinear systemClassical mechanicsBucklingMechanics of MaterialsAttractor0101 mathematicsNonlinear OscillationsFinite setBeam (structure)Mathematics

description

Abstract This paper deals with damped transverse vibrations of elastically coupled double-beam system under even compressive axial loading. Each beam is assumed to be elastic, extensible and supported at the ends. The related stationary problem is proved to admit both unimodal (only one eigenfunction is involved) and bimodal (two eigenfunctions are involved) buckled solutions, and their number depends on structural parameters and applied axial loads. The occurrence of a so complex structure of the steady states motivates a global analysis of the longtime dynamics. In this regard, we are able to prove the existence of a global regular attractor of solutions. When a finite set of stationary solutions occurs, it consists of the unstable manifolds connecting them.

https://doi.org/10.1016/j.ijnonlinmec.2016.06.009