6533b838fe1ef96bd12a529b
RESEARCH PRODUCT
Chaperone action in the posttranslational topological reorientation of the hepatitis B virus large envelope protein: Implications for translocational regulation
Reinhild PrangeCarsten Lambertsubject
Protein ConformationImmunoprecipitationHSC70 Heat-Shock Proteinsmacromolecular substancesTopologyProtein structureViral Envelope ProteinsAnimalsHSP70 Heat-Shock ProteinsEndoplasmic Reticulum Chaperone BiPHeat-Shock ProteinsMultidisciplinarybiologyEndoplasmic reticulumHSC70 Heat-Shock ProteinsBiological SciencesPrecipitin TestsTransport proteinProtein TransportMembrane topologyChaperone (protein)COS Cellsbiology.proteinProtein topologyCarrier ProteinsProtein Processing Post-TranslationalMolecular Chaperonesdescription
The large L envelope protein of the hepatitis B virus utilizes a new folding pathway to acquire a dual transmembrane topology in the endoplasmic reticulum (ER). The process involves cotranslational membrane integration and subsequent posttranslational translocation of its preS subdomain into the ER. Here, we demonstrate that the conformational and functional heterogeneity of L depends on the action of molecular chaperones. Using coimmunoprecipitation, we observed specific interactions between L and the cytosolic Hsc70, in conjunction with Hsp40, and between L and the ER-resident BiP in mammalian cells. Complex formation between L and Hsc70 was abolished when preS translocation was artificially switched to a cotranslational mode, implicating Hsc70 to act as a preS holding and folding catalyst that controls partial preS posttranslocation. The functional role of Hsc70 in L topogenesis was confirmed through modulation of its in vivo activity by overexpressing its co-chaperones Hip and Bag-1. Overexpression of the Hsc70-stimulating molecule Hip led to increased entrapping of preS on the cytosolic ER face and hence to a decrease in preS posttranslocation, whereas the negative regulator Bag-1 had the opposite effects. Furthermore, Hip-mediated Hsc70 activation impaired virus production in hepatitis B virus-replicating hepatoma cells, likely due to the improper topological reorientation of L. Together, these results indicate that translocational regulation of protein topology by chaperones provides a means of generating structural and functional diversity. They also hint to the dynamic nature of the mammalian ER translocation machinery in handling co- and posttranslational substrates.
year | journal | country | edition | language |
---|---|---|---|---|
2003-04-15 | Proceedings of the National Academy of Sciences |