6533b839fe1ef96bd12a5ad8
RESEARCH PRODUCT
Fuzzy Control Strategy for Cooperative Non-holonomic Motion of Cybercars with Passengers Vibration Analysis
Francesco Maria RaimondiMaurizio Mellusosubject
Nonholonomic systemComputer scienceHolonomicControl engineeringKalman filterFuzzy control systemKinematicsMotion controlComputer Science::RoboticsCybercars motion control passengers vibration intelligent controlSettore ING-INF/04 - AutomaticaControl theoryBacksteppingTrajectoryCybercars Fuzzy Control Passengers vibration analysis.description
The cybercars are electric road wheeled non-holonomic vehicles with fully automated driving capabilities. They contribute to sustainable mobility and are employed as passenger vehicles. Non-holonomic mechanics describes the motion of the cybercar constrained by non-integrable constraints, i.e. constraints on the system velocities that do not arise from constraints on the configuration alone. First of all there are thus with dynamic nonholonomic constraints, i.e. constraints preserved by the basic Euler-Lagrange equations (Bloch, 2000; Melluso, 2007; Raimondi & Melluso, 2006-a). Of course, these constraints are not externally imposed on the system but rather are consequences of the equations of motion of the cybercar, and so it sometimes convenient to treat them as conservation laws rather than constraints per se. On the other hand, kinematic non-holonomic constraints are those imposed by kinematics, such as rolling constraints. The goal of the motion control of cybercars is to allow the automated vehicle to go from one terminal to another while staying on a defined trajectory and maintaining a set of performance criteria in terms of speeds, accelerations and jerks. There are many results concerning the issue of kinematic motion control for single car (Fierro & Lewis, 1997). The main idea behind the kinematic control algorithms is to define the velocity control inputs which stabilize the closed loop system. These works are based only on the steering kinematics and assume that there exists perfect velocity tracking, i.e. the control signal instantaneously affects the car velocities and this is not true. Other control researchers have target the problems of time varying trajectories tracking, regulating a single car to a desired position/orientation and incorporating the effects of the dynamical model to enhance the overall performance of the closed loop system. The works above are based on a backstepping approach, where the merging of kinematic and dynamic effects leads to the control torques applied to the motors of the wheels. A Fuzzy dynamic closed loop motion control for a single non-holonomic car based on backstepping approach and oriented to stability analysis of the motion errors has been developed by Raimondi & Melluso (2005). In Raimondi & Melluso (2006-b) and Raimondi & Melluso (2007-a) adaptive fuzzy motion control systems for single non-holonomic automated vehicles with unknown dynamic and kinematic parameters and Kalman’s filter to localize the car have been presented. With regards to the problems of cooperative control of multiple cybercars, a number of techniques have been developed for omni-directional
year | journal | country | edition | language |
---|---|---|---|---|
2021-05-28 |