6533b839fe1ef96bd12a5afa
RESEARCH PRODUCT
Heavy enzymes and the rational redesign of protein catalysts
Iñaki TuñónRudolf Konrad AllemannLouis Y. P. LukVicent MolinerAlan Scottsubject
010402 general chemistryProtein Engineering01 natural sciencesBiochemistryCatalysisEnzyme catalysisisotope effectsCatalytic DomainDihydrofolate reductaseMolecular BiologyAlcohol dehydrogenasechemistry.chemical_classificationalcohol dehydrogenasesCarbon Isotopesdihydrofolate reductasesbiologyBacteriaNitrogen Isotopes010405 organic chemistryConceptOrganic ChemistryAlcohol DehydrogenaseActive siteSubstrate (chemistry)Protein engineeringDeuteriumCombinatorial chemistrymolecular dynamics0104 chemical sciencesKineticsTetrahydrofolate Dehydrogenaseenzyme engineeringEnzymechemistrybiology.proteinBiocatalysisMolecular MedicineConceptsdescription
Abstract An unsolved mystery in biology concerns the link between enzyme catalysis and protein motions. Comparison between isotopically labelled “heavy” dihydrofolate reductases and their natural‐abundance counterparts has suggested that the coupling of protein motions to the chemistry of the catalysed reaction is minimised in the case of hydride transfer. In alcohol dehydrogenases, unnatural, bulky substrates that induce additional electrostatic rearrangements of the active site enhance coupled motions. This finding could provide a new route to engineering enzymes with altered substrate specificity, because amino acid residues responsible for dynamic coupling with a given substrate present as hotspots for mutagenesis. Detailed understanding of the biophysics of enzyme catalysis based on insights gained from analysis of “heavy” enzymes might eventually allow routine engineering of enzymes to catalyse reactions of choice.
year | journal | country | edition | language |
---|---|---|---|---|
2019-11-18 |