6533b839fe1ef96bd12a5d14
RESEARCH PRODUCT
eNOS S-nitrosylates β-actin on Cys374 and regulates PKC-θ at the immune synapse by impairing actin binding to profilin-1.
Victor M. VictorJesús VázquezAntonio Martínez-ruizAngel OrtegaNoa B. Martín-cófrecesAlicia Izquierdo-alvarezBegoña SotEnrique CalvoSales IbizaFrancisco Sánchez-madridAlmudena García-ortizJuan M. SerradorAntonio Trullosubject
Life Sciences & Biomedicine - Other Topics0301 basic medicinePOLARIZATIONIMMUNOLOGICAL SYNAPSEImmunological SynapsesT-LymphocytesPROTEINGolgi ApparatusCYTOSKELETONRetrograde FlowBiochemistryARP2/3 COMPLEXT-CELL-ACTIVATIONProfilinsWhite Blood CellsContractile ProteinsFluorescence MicroscopyAnimal CellsMedicine and Health SciencesPseudopodiaBiology (General)Post-Translational ModificationCells CulturedProtein Kinase CMicroscopyT CellsGeneral NeuroscienceLight MicroscopyNeurochemistryRecombinant Proteins3. Good healthIsoenzymesPOLYMERIZATIONProtein TransportCell ProcessesRNA InterferenceCellular TypesNeurochemicalsGeneral Agricultural and Biological SciencesLife Sciences & BiomedicineResearch ArticleBiochemistry & Molecular BiologyNitric Oxide Synthase Type IIIQH301-705.5Imaging TechniquesRecombinant Fusion ProteinsImmune CellsImmunologyLibrary scienceAntigen-Presenting Cellsmacromolecular substancesBiologyNitric OxideResearch and Analysis MethodsGeneral Biochemistry Genetics and Molecular BiologyCell Line03 medical and health sciencesFluorescence ImagingHumansCysteineNITRIC-OXIDE SYNTHASEBiologyScience & TechnologyBlood CellsRECEPTORGeneral Immunology and MicrobiologyBiology and Life SciencesProteinsCell BiologyActinsS-NitrosylationEnzyme ActivationLuminescent ProteinsCytoskeletal Proteins030104 developmental biologyAmino Acid SubstitutionRETROGRADE FLOWProtein Kinase C-thetaMutationProtein Processing Post-TranslationalNeuroscienceActin Polymerizationdescription
The actin cytoskeleton coordinates the organization of signaling microclusters at the immune synapse (IS); however, the mechanisms involved remain poorly understood. We show here that nitric oxide (NO) generated by endothelial nitric oxide synthase (eNOS) controls the coalescence of protein kinase C-¿ (PKC-¿) at the central supramolecular activation cluster (c-SMAC) of the IS. eNOS translocated with the Golgi to the IS and partially colocalized with F-actin around the c-SMAC. This resulted in reduced actin polymerization and centripetal retrograde flow of ß-actin and PKC-¿ from the lamellipodium-like distal (d)-SMAC, promoting PKC-¿ activation. Furthermore, eNOS-derived NO S-nitrosylated ß-actin on Cys374 and impaired actin binding to profilin-1 (PFN1), as confirmed with the transnitrosylating agent S-nitroso-L-cysteine (Cys-NO). The importance of NO and the formation of PFN1-actin complexes on the regulation of PKC-¿ was corroborated by overexpression of PFN1- and actin-binding defective mutants of ß-actin (C374S) and PFN1 (H119E), respectively, which reduced the coalescence of PKC-¿ at the c-SMAC. These findings unveil a novel NO-dependent mechanism by which the actin cytoskeleton controls the organization and activation of signaling microclusters at the IS.
year | journal | country | edition | language |
---|---|---|---|---|
2017-04-01 | PLoS biology |