0000000000040789
AUTHOR
Enrique Calvo
Study of scintillation light collection, production and propagation in a 4 tonne dual-phase LArTPC
The $3 \times 1 \times 1$ m$^3$ demonstrator is a dual phase liquid argon time projection chamber that has recorded cosmic rays events in 2017 at CERN. The light signal in these detectors is crucial to provide precise timing capabilities. The performances of the photon detection system, composed of five PMTs, are discussed. The collected scintillation and electroluminescence light created by passing particles has been studied in various detector conditions. In particular, the scintillation light production and propagation processes have been analyzed and compared to simulations, improving the understanding of some liquid argon properties.
Significant in vivo anti-inflammatory activity of Pytren4Q-Mn a superoxide dismutase 2 (SOD2) mimetic scorpiand-like Mn (II) complex.
Background The clinical use of purified SOD enzymes has strong limitations due to their large molecular size, high production cost and immunogenicity. These limitations could be compensated by using instead synthetic SOD mimetic compounds of low molecular weight. Background/Methodology We have recently reported that two SOD mimetic compounds, the MnII complexes of the polyamines Pytren2Q and Pytren4Q, displayed high antioxidant activity in bacteria and yeast. Since frequently molecules with antioxidant properties or free-radical scavengers also have anti-inflammatory properties we have assessed the anti-inflammatory potential of Pytren2Q and Pytren4Q MnII complexes, in cultured macrophages …
Volume IV The DUNE far detector single-phase technology
This document was prepared by the DUNE collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. The DUNE collaboration also acknowledges the international, national, and regional funding agencies supporting the institutions who have contributed to completing this Technical Design Report.
First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform
The ProtoDUNE-SP detector was constructed and operated on the CERN Neutrino Platform. We thank the CERN management for providing the infrastructure for this experiment and gratefully acknowledge the support of the CERN EP, BE, TE, EN, IT and IPT Departments for NP04/ProtoDUNE-SP. This documentwas prepared by theDUNEcollaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. This work was supported by CNPq, FAPERJ, FAPEG and FAPESP, Brazil; CFI, IPP and NSERC, Canada; CERN; MSMT, Czech Republi…
Neutrino interaction classification with a convolutional neural network in the DUNE far detector
The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2–5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino…
Identification ofCandida albicanswall mannoproteins covalently linked by disulphide and/or alkali-sensitive bridges
This paper describes the results obtained by analysing the human pathogen Candida albicans cell wall subproteome by mass spectrometry, using extraction procedures aimed at releasing proteins bound by disulphide bridges (RAE-CWP) or alkali-labile ester linkages (ALS-CWP). Ten of the total proteins released from the wall by β-ME and/or NaOH contained a potential signal peptide, lacked a GPI cell wall hydrophobic C-terminal domain and were identified as true wall proteins by in silico analysis, whereas four additional proteins were identified as bound to the plasma membrane. The results surprisingly demonstrated that, in addition to the expected RAE-CWP and ALS-CWP proteins, 16 GPI proteins we…
A 4 tonne demonstrator for large-scale dual-phase liquid argon time projection chambers
A 10 kilo-tonne dual-phase liquid argon TPC is one of the detector options considered for the Deep Underground Neutrino Experiment (DUNE). The detector technology relies on amplification of the ionisation charge in ultra-pure argon vapour and offers several advantages compared to the traditional single-phase liquid argon TPCs. A 4.2 tonne dual-phase liquid argon TPC prototype, the largest of its kind, with an active volume of \three has been constructed and operated at CERN. In this paper we describe in detail the experimental setup and detector components as well as report on the operation experience. We also present the first results on the achieved charge amplification, prompt scintillat…
Two-pion Bose-Einstein correlations inppcollisions ats=900 GeV
We report on the measurement of two-pion correlation functions from pp collisions at root s = 900 GeV performed by the ALICE experiment at the Large Hadron Collider. Our analysis shows an increase of the Hanbury Brown-Twiss radius with increasing event multiplicity, in line with other measurements done in particle- and nuclear collisions. Conversely, the strong decrease of the radius with increasing transverse momentum, as observed at the Relativistic Heavy Ion Collider and at Tevatron, is not manifest in our data.
Volume I. Introduction to DUNE
Journal of Instrumentation 15(08), T08008 (1-228) (2020). doi:10.1088/1748-0221/15/08/T08008
Search forBs0→μ+μ−andB0→μ+μ−Decays with CDF II
A search has been performed for B{sub s}{sup 0} {yields} {mu}{sup +}{mu}{sup -} and B{sup 0} {yields} {mu}{sup +}{mu}{sup -} decays using 7 fb{sup -1} of integrated luminosity collected by the CDF II detector at the Fermilab Tevatron collider. The observed number of B{sup 0} candidates is consistent with background-only expectations and yields an upper limit on the branching fraction of {Beta}(B{sup 0} {yields} {mu}{sup +}{mu}{sup -}) < 6.0 x 10{sup -9} at 95% confidence level. We observe an excess of B{sub s}{sup 0} candidates. The probability that the background processes alone could produce such an excess or larger is 0.27%. The probability that the combination of background and the expe…
Midrapidity Antiproton-to-Proton Ratio inppCollisons ats=0.9and 7 TeV Measured by the ALICE Experiment
The ratio of the yields of antiprotons to protons in pp collisions has been measured by the ALICE experiment at root s = 0.9 and 7 TeV during the initial running periods of the Large Hadron Collider. The measurement covers the transverse momentum interval 0.45 < p(t) < 1.05 GeV/c and rapidity vertical bar y vertical bar < 0.5. The ratio is measured to be R-vertical bar y vertical bar<0.5 = 0.957 +/- 0.006(stat) +/- 0.0014(syst) at 0.9 Tev and R-vertical bar y vertical bar<0.5 = 0.991 +/- 0.005 +/- 0.014(syst) at 7 TeV and it is independent of both rapidity and transverse momentum. The results are consistent with the conventional model of baryon-number transport and set stringent limits on a…
eNOS S-nitrosylates β-actin on Cys374 and regulates PKC-θ at the immune synapse by impairing actin binding to profilin-1.
The actin cytoskeleton coordinates the organization of signaling microclusters at the immune synapse (IS); however, the mechanisms involved remain poorly understood. We show here that nitric oxide (NO) generated by endothelial nitric oxide synthase (eNOS) controls the coalescence of protein kinase C-¿ (PKC-¿) at the central supramolecular activation cluster (c-SMAC) of the IS. eNOS translocated with the Golgi to the IS and partially colocalized with F-actin around the c-SMAC. This resulted in reduced actin polymerization and centripetal retrograde flow of ß-actin and PKC-¿ from the lamellipodium-like distal (d)-SMAC, promoting PKC-¿ activation. Furthermore, eNOS-derived NO S-nitrosylated ß-…
Observation of the rare B(s)(0) + decay from the combined analysis of CMS and LHCb data.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported licence.-- et al.
Oxidative stress protection by manganese complexes of tail-tied aza-scorpiand ligands.
The Mn2+ coordination chemistry of double scorpiand ligands in which two polyazacyclophane macrocycles have been connected by pyridine, phenanthroline and bipyridine spacers has been studied by potentiometry, paramagnetic NMR and electrochemistry. All ligands show high stability with Mn2+ and the complexes were formed in a wide pH range. DFT calculations support the structures and coordination geometries derived from the study. A remarkable antioxidant activity was evidenced for these systems by the McCord-Fridovich assay and in Escherichiacoli sodAsodB deficient bacterial cells. The three systems were tested as anti-inflammatory drugs in human macrophages measuring the accumulation of cyto…
A study of the Candida albicans cell wall proteome
Considering the importance of proteins in the structure and function of the cell wall of Candida albicans, we analyzed the cell wall subproteome of this important human pathogen by LC coupled to MS (LC-MS) using different protein extraction procedures. The analyzed samples included material extracted by hydrogen fluoride-pyridine (HF-pyridine), and whole SDS-extracted cell walls. The use of this latter innovative procedure gave similar data as compared to the analysis of HF-pyridine extracted proteins. A total of 21 cell wall proteins predicted to contain a signal peptide were identified, together with a high content of potentially glycosylated Ser/Thr residues, and the presence of a GPI mo…
Volume III. DUNE far detector technical coordination
The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay-these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the st…
General Statistical Framework for Quantitative Proteomics by Stable Isotope Labeling
Pedro J. Navarro et al.