6533b839fe1ef96bd12a6511
RESEARCH PRODUCT
Asymptotic Behaviors of Solutions to quasilinear elliptic Equations with critical Sobolev growth and Hardy potential
Chang-lin Xiangsubject
Pure mathematicsApplied Mathematicsmedia_common.quotation_subjectta111010102 general mathematicsMathematical analysisHardy's inequalitycomparison principleInfinity01 natural sciences010101 applied mathematicsSobolev spaceMathematics - Analysis of PDEs35J60 35B33FOS: Mathematicsquasilinear elliptic equationsasymptotic behaviors0101 mathematicsHardy's inequalityAnalysismedia_commonMathematicsAnalysis of PDEs (math.AP)description
Abstract Optimal estimates on the asymptotic behaviors of weak solutions both at the origin and at the infinity are obtained to the following quasilinear elliptic equations − Δ p u − μ | x | p | u | p − 2 u = Q ( x ) | u | N p N − p − 2 u , x ∈ R N , where 1 p N , 0 ≤ μ ( ( N − p ) / p ) p and Q ∈ L ∞ ( R N ) .
year | journal | country | edition | language |
---|---|---|---|---|
2015-01-01 |