6533b839fe1ef96bd12a66de

RESEARCH PRODUCT

The effect of magnetic anisotropy on the spin configurations of patterned La(0.7)Sr(0.3)MnO3 elements.

Laurence MéchinF. GaucherAndrea LocatelliLaura J. HeydermanLaura J. HeydermanFrithjof NoltingMichael FoersterS. El MoussaouiM. A. NiñoP. WohlhüterP. WohlhüterP. WohlhüterAndré BisigJan RhensiusJan RhensiusMathias KläuiJ. HeidlerJ. HeidlerEberhard GoeringH. S. KörnerH. S. KörnerH. S. KörnerC. A. F. VazC. A. F. Vaz

subject

Condensed matter physicsChemistryBar (music)02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter PhysicsMagnetocrystalline anisotropy01 natural sciencesVortexMagnetic fieldCondensed Matter::Materials ScienceDipolePhotoemission electron microscopyMagnetic anisotropy0103 physical sciencesGeneral Materials Science010306 general physics0210 nano-technologySpin (physics)

description

We study the effect of magnetocrystalline anisotropy on the magnetic configurations of La0.7Sr0.3MnO3 bar and triangle elements using photoemission electron microscopy imaging. The dominant remanent state is a low energy flux-closure state for both thin (15 nm) and thick (50 nm) elements. The magnetocrystalline anisotropy, which competes with the dipolar energy, causes a strong modification of the spin configuration in the thin elements, depending on the shape, size and orientation of the structures. We investigate the magnetic switching processes and observe in triangular shaped elements a displacement of the vortex core along the easy axis for an external magnetic field applied close to the hard axis, which is well reproduced by micromagnetic simulations.

10.1088/0953-8984/25/17/176004https://pubmed.ncbi.nlm.nih.gov/23567900