0000000000398793
AUTHOR
Eberhard Goering
Direct observation of spin wave focusing by a Fresnel lens
Spin waves are discussed as promising information carrier for beyond complementary metal-oxide semiconductor data processing. One major challenge is guiding and steering of spin waves in a uniform film. Here, we explore the use of diffractive optics for these tasks by nanoscale real-space imaging using x-ray microscopy and careful analysis with micromagnetic simulations. We discuss the properties of the focused caustic beams that are generated by a Fresnel-type zone plate and demonstrate control and steering of the focal spot. Thus, we present a steerable and intense nanometer-sized spin-wave source. Potentially, this could be used to selectively illuminate magnonic devices like nano-oscill…
Ptychographic imaging and micromagnetic modeling of thermal melting of nanoscale magnetic domains in antidot lattices
CA extern Antidot lattices are potential candidates to act as bit patterned media for data storage as they are able to trap nanoscale magnetic domains between two adjacent holes. Here, we demonstrate the combination of micromagnetic modeling and x-ray microscopy. Detailed simulation of these systems can only be achieved by micromagnetic modeling that takes thermal effects into account. For this purpose, a Landau-Lifshitz-Bloch approach is used here. The calculated melting of magnetic domains within the antidot lattice is reproduced experimentally by x-ray microscopy. Furthermore, we compare conventional scanning transmission x-ray microscopy with resolution enhanced ptychography. Hence, we …
Magnetism of Co-doped ZnO thin films
We have investigated magnetic and transport properties of 5% Co-doped and undoped ZnO thin films deposited on $r$ plane ${\mathrm{Al}}_{2}{\mathrm{O}}_{3}$ substrates by pulsed laser deposition. The Co doped films showed paramagnetic and ferromagnetic behavior as well as a high magnetoresistance and a small anomalous Hall effect. In a range of $0\phantom{\rule{0.3em}{0ex}}\text{to}\phantom{\rule{0.3em}{0ex}}5\phantom{\rule{0.3em}{0ex}}\mathrm{T}$ at low temperatures we observed a double sign change of the magnetoresistance. For undoped ZnO films, prepared by the same conditions, only a negative MR was observed, but surprisingly also a very small anomalous Hall effect. We explain our results…
The effect of magnetic anisotropy on the spin configurations of patterned La(0.7)Sr(0.3)MnO3 elements.
We study the effect of magnetocrystalline anisotropy on the magnetic configurations of La0.7Sr0.3MnO3 bar and triangle elements using photoemission electron microscopy imaging. The dominant remanent state is a low energy flux-closure state for both thin (15 nm) and thick (50 nm) elements. The magnetocrystalline anisotropy, which competes with the dipolar energy, causes a strong modification of the spin configuration in the thin elements, depending on the shape, size and orientation of the structures. We investigate the magnetic switching processes and observe in triangular shaped elements a displacement of the vortex core along the easy axis for an external magnetic field applied close to t…
Absence of element specific ferromagnetism in Co doped ZnO investigated by soft X-ray resonant reflectivity
On the quest for the intrinsic origin of ferromagnetism (FM) in ZnO doped with a few percent transition metal, we show detailed X-ray resonant magnetic reflectivity (XRMR) measurements, performed at the Co L2,3 and the O K edges of pulsed laser deposition (PLD) prepared samples. These samples show ferromagnetism at room temperature (RT) (QUID: about 2μB /Co). But in contrast to the QUID measurements, element specific reflection measurements as a function of angle (θ-2θ scans) and energy (const. qz) do not show any sign of ferromagnetism. Therefore, we can exclude without doubt Co as a possible origin for FM in this system. Our results are in perfect agreement with earlier published XMCD dat…