6533b839fe1ef96bd12a66e9
RESEARCH PRODUCT
The bending triad of the quasi-spherical top molecule SO2F2 in the 550 cm(-1) region
F. HegelundHans BürgerI. MerkeMaud RotgerVincent BoudonN. Zvereva-loeteLaurent MargulèsJean DemaisonMichel Loetesubject
asymmetric tops010504 meteorology & atmospheric sciencesInfraredAb initioInfrared spectroscopy01 natural sciencesStandard deviation010309 opticssymbols.namesakeQuantum mechanics0103 physical sciencesMoleculePhysical and Theoretical Chemistryinfrared spectroscopySpectroscopy0105 earth and related environmental sciencesmicrowave spectroscopyPhysics[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]XY(2)Z(2)Rotational–vibrational spectroscopyAtomic and Molecular Physics and Optics[ PHYS.PHYS.PHYS-AO-PH ] Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]symbolsRotational spectroscopyHamiltonian (quantum mechanics)tensorial formalismdescription
International audience; The analysis of the v(3)/v(7)/v(9) bending triad of SO2F2 has been recently performed with the Watson's Hamiltonian up to octic terms employing 79 rovibrational parameters but including only the first order Coriolis interaction terms, fixed to ab initio values [H. Burger, J. Demaison, F. Hegelund, L. Margules, I. Merke, J. Mol. Struct. 612 (2002) 133-141]. Since SO2F2 is a quasi-spherical top, it can also be considered as derived from the SO42- sulfate ion. We have thus developed a new tensorial formalism in the O(3) > Td > C2v group chain [M. Rotger, V. Boudon, M. Loete, J. Mol. Spectrosc. 216 (2002) 297-307]. This approach allows a systematic development of rovibrational interactions and makes global analyses easier to perform even for complex polyad systems. We present here an application of this model to the analysis of the bending triad, with the same set of microwave assignments and almost the same set of infrared assignments as in the previous study of Burger et al. It appears that we need to expand our Hamiltonian to a lower degree than the "classical" one (six instead of eight) when including also the second order Coriolis interactions. Our fit does not include more parameters. Furthermore, all of them are determined and the standard deviation of the rotational transitions is twice smaller. The analysis has been performed thanks to the C-2 upsilon TDS program suite, which is freely available at the URL: http://icb.u-bourgogne.fr/OMR/SMA/SHTDS/C2VTDS.html.
year | journal | country | edition | language |
---|---|---|---|---|
2006-08-01 |