6533b83afe1ef96bd12a6f61
RESEARCH PRODUCT
Bifunctional poly(acrylamide) hydrogels through orthogonal coupling chemistries
Wenqiang FanAránzazu Del CampoAránzazu Del CampoAránzazu Del CampoMarcelo SaliernoMarcelo SaliernoAleeza FarrukhAleeza FarrukhBenedikt BerningerJulieta I. PaezJulieta I. Paezsubject
0301 basic medicine570Polymers and PlasticsPolymersOtras Ciencias BiológicasPoly(acrylamide)Acrylic ResinsBiocompatible MaterialsBioengineeringINGENIERÍAS Y TECNOLOGÍAS02 engineering and technologyBiotecnología IndustrialCiencias BiológicasBiomaterialsMice03 medical and health scienceschemistry.chemical_compoundUltraviolet visible spectroscopyPolymer chemistryMaterials ChemistryCopolymerAnimalsPolylysineBifunctionalCells CulturedAcrylic acidNeuronschemistry.chemical_classificationOtras Ciencias QuímicasBiomoleculeCiencias QuímicasHydrogels021001 nanoscience & nanotechnologyMice Inbred C57BL030104 developmental biologychemistryChemical engineeringAcrylamideSelf-healing hydrogelsAmine gas treatingLaminin0210 nano-technologyCIENCIAS NATURALES Y EXACTASdescription
Biomaterials for cell culture allowing simple and quantitative presentation of instructive cues enable rationalization of the interplay between cells and their surrounding microenvironment. Poly(acrylamide) (PAAm) hydrogels are popular 2D-model substrates for this purpose. However, quantitative and reproducible biofunctionalization of PAAm hydrogels with multiple ligands in a trustable, controlled, and independent fashion is not trivial. Here, we describe a method for bifunctional modification of PAAm hydrogels with thiol- and amine- containing biomolecules with controlled densities in an independent, orthogonal manner. We developed copolymer networks of AAm with 9% acrylic acid and 2% N-(4-(5-(methylsulfonyl)-1,3,4-oxadiazol-2-yl)phenyl)acrylamide. The covalent binding of thiol- and amine-containing chromophores at tunable concentrations was demonstrated and quantified by UV spectroscopy. The morphology, mechanical properties, and homogeneity of the copolymerized hydrogels were characterized by scanning electron microscopy, dynamic mechanical analysis, and confocal microscopy studies. Our copolymer hydrogels were bifunctionalized with polylysine and a laminin-mimetic peptide using the specific chemistries. We analyzed the effect of binding protocol of the two components in the maturation of cultured postmitotic cortical neurons. Our substrates supported neuronal attachment, proliferation, and neuronal differentiation. We found that neurons cultured on our hydrogels bifunctionalized with ligand-specific chemistries in a sequential fashion exhibited higher maturation at comparable culture times than using a simultaneous bifunctionalization strategy, displaying a higher number of neurites, branches, and dendritic filopodia. These results demonstrate the relevance of quantitative and optimized coupling chemistries for the performance of simple biomaterials and with sensitive cell types. Fil: Farrukh, Aleeza. Leibniz Institute for New Materials; Alemania. Max-Planck-Institut für Polymerforschung; Alemania Fil: Paez, Julieta Irene. Leibniz Institute for New Materials; Alemania. Max-Planck-Institut für Polymerforschung; Alemania Fil: Salierno, Marcelo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Max-Planck-Institut für Polymerforschung; Alemania. Johannes Gutenberg University; Alemania. Johannes Gutenberg University Mainz; Alemania Fil: Fan, Wenqiang. Johannes Gutenberg University; Alemania. Johannes Gutenberg University Mainz; Alemania Fil: Berninger, Benedikt. Johannes Gutenberg University; Alemania. Johannes Gutenberg University Mainz; Alemania Fil: del Campo, Aránzazu. Leibniz Institute for New Materials; Alemania. Max-Planck-Institut für Polymerforschung; Alemania. Saarland University; Alemania
year | journal | country | edition | language |
---|---|---|---|---|
2019-10-28 |