0000000000583022

AUTHOR

Marcelo Salierno

0000-0003-3897-3177

showing 7 related works from this author

Photoactivatable caged cyclic RGD peptide for triggering integrin binding and cell adhesion to surfaces.

2011

We report the synthesis and properties of a photoactivatable caged RGD peptide and its application for phototriggering integrin- and cell-binding to surfaces. We analysed in detail 1) the differences in the integrin-binding affinity of the caged and uncaged forms by quartz crystal microbalance (QCM) studies, 2) the efficiency and yield of the photolytic uncaging reaction, 3) the biocompatibility of the photolysis by-products and irradiation conditions, 4) the possibility of site, temporal and density control of integrin-binding and therefore human cell attachment, and 5) the possibility of in situ generation of cell patterns and cell gradients by controlling the UV exposure. These studies p…

In situIntegrinsBiocompatibilityStereochemistryUltraviolet RaysCellIntegrinBiochemistryPeptides CyclicmedicineCell AdhesionHumansCell adhesionMolecular BiologyCells CulturedIntegrin bindingMaterialesbiologyChemistryOrganic ChemistryQuímicaQuartz crystal microbalanceCyclic rgd peptidemedicine.anatomical_structureBiophysicsbiology.proteinQuartz Crystal Microbalance TechniquesMolecular MedicineProtein BindingChembiochem : a European journal of chemical biology
researchProduct

Photoactivatable Adhesive Ligands for Light-Guided Neuronal Growth

2018

Neuro-regeneration after trauma requires growth and reconnection of neurons to reestablish information flow in particular directions across the damaged tissue. To support this process, biomaterials for nerve tissue regeneration need to provide spatial information to adhesion receptors on the cell membrane and to provide directionality to growing neurites. Here, photoactivatable adhesive peptides based on the CASIKVAVSADR laminin peptidomimetic are presented and applied to spatiotemporal control of neuronal growth to biomaterials in vitro. The introduction of a photoremovable group [6-nitroveratryl (NVOC), 3-(4,5-dimethoxy-2-nitrophenyl)butan-2-yl (DMNPB), or 2,2′-((3′-(1-hydroxypropan-2-yl)…

0301 basic medicineGUIDED AXON GROWTHNeuritePeptidomimeticNeurogenesisPeptideBiocompatible Materials02 engineering and technologyNEUROCHEMISTRYLigandsBiochemistryPHOTOTRIGGERED CELL ADHESIONCell membrane03 medical and health sciencesLamininmedicineCell AdhesionAnimalsAmino Acid SequenceCell adhesionMolecular BiologyCells Culturedchemistry.chemical_classificationNeuronsPhotolysisbiologyChemistryCELL ADHESIONOrganic ChemistryCiencias QuímicasAdhesion021001 nanoscience & nanotechnologyIn vitroLAMININ PEPTIDOMIMETICSMice Inbred C57BL030104 developmental biologymedicine.anatomical_structureQuímica OrgánicaBiophysicsbiology.proteinMolecular MedicineLaminin0210 nano-technologyPeptidesCIENCIAS NATURALES Y EXACTAS
researchProduct

Bifunctional Hydrogels Containing the Laminin Motif IKVAV Promote Neurogenesis

2017

Summary Engineering of biomaterials with specific biological properties has gained momentum as a means to control stem cell behavior. Here, we address the effect of bifunctionalized hydrogels comprising polylysine (PL) and a 19-mer peptide containing the laminin motif IKVAV (IKVAV) on embryonic and adult neuronal progenitor cells under different stiffness regimes. Neuronal differentiation of embryonic and adult neural progenitors was accelerated by adjusting the gel stiffness to 2 kPa and 20 kPa, respectively. While gels containing IKVAV or PL alone failed to support long-term cell adhesion, in bifunctional gels, IKVAV synergized with PL to promote differentiation and formation of focal adh…

0301 basic medicineCellular differentiationHYDROGELSCELL DIFFERENTIATION02 engineering and technologyBiochemistry//purl.org/becyt/ford/1 [https]MiceNeural Stem CellsIKVAVlcsh:QH301-705.5Cells Culturedlcsh:R5-920β(1)-integrinNeurogenesisHydrogelsMouse Embryonic Stem Cells021001 nanoscience & nanotechnologyNeural stem cellCell biologyStem celllcsh:Medicine (General)0210 nano-technologyCIENCIAS NATURALES Y EXACTASbiomaterialsPOLYLYSINENeurogenesisBiologyNEUROGENESISCiencias BiológicasFocal adhesion03 medical and health sciencesBiología Celular MicrobiologíalamininReportGeneticsΒ1-INTEGRINAnimalsProgenitor cell//purl.org/becyt/ford/1.6 [https]BIOMATERIALSCell adhesionFocal AdhesionsbioengineeringTissue Engineeringβ1-integrinCell BiologypolylysineNEURAL STEM CELLSMolecular biologyEmbryonic stem cellElasticityPeptide FragmentsBIOENGINEERINGLAMININMice Inbred C57BLcell differentiation030104 developmental biologylcsh:Biology (General)Developmental BiologyStem Cell Reports
researchProduct

Bifunctional poly(acrylamide) hydrogels through orthogonal coupling chemistries

2019

Biomaterials for cell culture allowing simple and quantitative presentation of instructive cues enable rationalization of the interplay between cells and their surrounding microenvironment. Poly(acrylamide) (PAAm) hydrogels are popular 2D-model substrates for this purpose. However, quantitative and reproducible biofunctionalization of PAAm hydrogels with multiple ligands in a trustable, controlled, and independent fashion is not trivial. Here, we describe a method for bifunctional modification of PAAm hydrogels with thiol- and amine- containing biomolecules with controlled densities in an independent, orthogonal manner. We developed copolymer networks of AAm with 9% acrylic acid and 2% N-(4…

0301 basic medicine570Polymers and PlasticsPolymersOtras Ciencias BiológicasPoly(acrylamide)Acrylic ResinsBiocompatible MaterialsBioengineeringINGENIERÍAS Y TECNOLOGÍAS02 engineering and technologyBiotecnología IndustrialCiencias BiológicasBiomaterialsMice03 medical and health scienceschemistry.chemical_compoundUltraviolet visible spectroscopyPolymer chemistryMaterials ChemistryCopolymerAnimalsPolylysineBifunctionalCells CulturedAcrylic acidNeuronschemistry.chemical_classificationOtras Ciencias QuímicasBiomoleculeCiencias QuímicasHydrogels021001 nanoscience & nanotechnologyMice Inbred C57BL030104 developmental biologychemistryChemical engineeringAcrylamideSelf-healing hydrogelsAmine gas treatingLaminin0210 nano-technologyCIENCIAS NATURALES Y EXACTAS
researchProduct

In Situ, Light-Guided Axon Growth on Biomaterials via Photoactivatable Laminin Peptidomimetic IK(HANBP)VAV

2018

The ability to guide the growth of neurites is relevant for reconstructing neural networks and for nerve tissue regeneration. Here, a biofunctional hydrogel that allows light-based directional control of axon growth in situ is presented. The gel is covalently modified with a photoactivatable derivative of the short laminin peptidomimetic IKVAV. This adhesive peptide contains the photoremovable group 2-(4′-amino-4-nitro-[1,1′-biphenyl]-3-yl)propan-1-ol (HANBP) on the Lys rest that inhibits its activity. The modified peptide is highly soluble in water and can be simply conjugated to -COOH containing hydrogels via its terminal -NH 2 group. Light exposure allows presentation of the IKVAV adhesi…

0301 basic medicineIn situMaterials scienceNeuritePeptidomimeticNeuronal OutgrowthPeptideINGENIERÍAS Y TECNOLOGÍAS02 engineering and technologyBiotecnología Industrial03 medical and health sciencesMiceCoated Materials BiocompatibleNeural Stem CellsDIRECTIONAL NEURONAL GROWTHLamininIKVAVNeuritesAnimalsGeneral Materials Sciencechemistry.chemical_classificationbiologyPHOTO-TRIGGERED CELL ADHESIONBioproductos Biomateriales Bioplásticos Biocombustibles Bioderivados etc.Hydrogels021001 nanoscience & nanotechnologyNeural stem cellPeptide FragmentsLAMININ PEPTIDOMIMETICS030104 developmental biologychemistryCell cultureSelf-healing hydrogelsbiology.proteinBiophysicsLamininPeptidomimetics0210 nano-technologyACS Applied Materials & Interfaces
researchProduct

Microenvironments to study migration and somal translocation in cortical neurons

2018

Migrating post-mitotic neurons of the developing cerebral cortex undergo terminal somal translocation (ST) when they reach their final destination in the cortical plate. This process is crucial for proper cortical layering and its perturbation can lead to brain dysfunction. Here we present a reductionist biomaterials platform that faithfully supports and controls the distinct phases of terminal ST in vitro. We developed microenvironments with different adhesive molecules to support neuronal attachment, neurite extension, and migration in distinct manners. Efficient ST occurred when the leading process of migratory neurons crossed from low-to high-adhesive areas on a substrate, promoting spr…

0301 basic medicineCORTICAL NEURONSGrowth ConesBiophysicsCEREBRAL CORTEXBioengineeringINGENIERÍAS Y TECNOLOGÍASBiologySOMAL TRANSLOCATIONMicrotubulesBiotecnología IndustrialBiomaterials03 medical and health sciences0302 clinical medicineMicrotubuleCell MovementmedicineSomal translocationCell AdhesionAnimalsCell adhesionGrowth coneCerebral CortexNeuronsBioproductos Biomateriales Bioplásticos Biocombustibles Bioderivados etc.Cortical neuronsActin cytoskeletonMice Inbred C57BLCORTICOGENESISCorticogenesisActin Cytoskeleton030104 developmental biologymedicine.anatomical_structureCellular MicroenvironmentNEURONAL MIGRATIONMechanics of MaterialsCerebral cortexCeramics and CompositesNeuroscience030217 neurology & neurosurgery
researchProduct

Cover Feature: Photoactivatable Adhesive Ligands for Light-Guided Neuronal Growth (ChemBioChem 12/2018)

2018

ChemistryFeature (computer vision)Organic ChemistryBiophysicsMolecular MedicineNeuronal GrowthCover (algebra)AdhesiveCell adhesionMolecular BiologyBiochemistryChemBioChem
researchProduct