6533b870fe1ef96bd12cf24b

RESEARCH PRODUCT

Microenvironments to study migration and somal translocation in cortical neurons

Xiang GuoBenedikt BerningerAránzazu Del CampoWenqiang FanLongjian XueShifang ZhaoMarcelo Salierno

subject

0301 basic medicineCORTICAL NEURONSGrowth ConesBiophysicsCEREBRAL CORTEXBioengineeringINGENIERÍAS Y TECNOLOGÍASBiologySOMAL TRANSLOCATIONMicrotubulesBiotecnología IndustrialBiomaterials03 medical and health sciences0302 clinical medicineMicrotubuleCell MovementmedicineSomal translocationCell AdhesionAnimalsCell adhesionGrowth coneCerebral CortexNeuronsBioproductos Biomateriales Bioplásticos Biocombustibles Bioderivados etc.Cortical neuronsActin cytoskeletonMice Inbred C57BLCORTICOGENESISCorticogenesisActin Cytoskeleton030104 developmental biologymedicine.anatomical_structureCellular MicroenvironmentNEURONAL MIGRATIONMechanics of MaterialsCerebral cortexCeramics and CompositesNeuroscience030217 neurology & neurosurgery

description

Migrating post-mitotic neurons of the developing cerebral cortex undergo terminal somal translocation (ST) when they reach their final destination in the cortical plate. This process is crucial for proper cortical layering and its perturbation can lead to brain dysfunction. Here we present a reductionist biomaterials platform that faithfully supports and controls the distinct phases of terminal ST in vitro. We developed microenvironments with different adhesive molecules to support neuronal attachment, neurite extension, and migration in distinct manners. Efficient ST occurred when the leading process of migratory neurons crossed from low-to high-adhesive areas on a substrate, promoting spreading of the leading growth cone. Our results indicate that elementary adhesive cell-substrate interactions strongly influence migratory behavior and the final positioning of neurons during their developmental journey. This in vitro model allows advanced experimentation to reveal the microenvironmental requirements underlying cortical layer development and disorders. Fil: Zhao, Shifang. Leibniz Institute for New Materials; Alemania. Max Planck Institute für Polymerforschung; Alemania. Universitat Saarland; Alemania Fil: Fan, Wenqiang. Johannes Gutenberg Universitat Mainz; Alemania Fil: Guo, Xiang. Leibniz Institute for New Materials; Alemania Fil: Xue, Longjian. Max Planck Institute für Polymerforschung; Alemania Fil: Berninger, Benedikt. Johannes Gutenberg Universitat Mainz; Alemania Fil: Salierno, Marcelo Javier. Max Planck Institute für Polymerforschung; Alemania. Johannes Gutenberg Universitat Mainz; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina Fil: del Campo, Aránzazu. Max Planck Institute für Polymerforschung; Alemania. Universitat Saarland; Alemania. Leibniz Institute for New Materials; Alemania

10.1016/j.biomaterials.2017.11.042https://www.sciencedirect.com/science/article/pii/S0142961217307743