6533b83afe1ef96bd12a6fb5
RESEARCH PRODUCT
The cyclicity of the elliptic segment loops of the reversible quadratic Hamiltonian systems under quadratic perturbations
Robert RoussarieChengzhi Lisubject
Pure mathematicsIntegrable systemApplied MathematicsMathematical analysisBifurcation diagramEllipseHamiltonian systemsymbols.namesakeLine segmentQuadratic equationConic sectionCyclicity of elliptic segment loopssymbolsReversible quadratic Hamiltonian systemsHamiltonian (quantum mechanics)AnalysisMathematicsdescription
Abstract Denote by Q H and Q R the Hamiltonian class and reversible class of quadratic integrable systems. There are several topological types for systems belong to Q H ∩ Q R . One of them is the case that the corresponding system has two heteroclinic loops, sharing one saddle-connection, which is a line segment, and the other part of the loops is an ellipse. In this paper we prove that the maximal number of limit cycles, which bifurcate from the loops with respect to quadratic perturbations in a conic neighborhood of the direction transversal to reversible systems (called in reversible direction), is two. We also give the corresponding bifurcation diagram.
year | journal | country | edition | language |
---|---|---|---|---|
2004-10-01 | Journal of Differential Equations |