6533b83afe1ef96bd12a6fb6
RESEARCH PRODUCT
Spectral rigidity and invariant distributions on Anosov surfaces
Gunther UhlmannGabriel P. PaternainMikko Salosubject
Unit sphereMathematics - Differential GeometryPure mathematicsAlgebra and Number TheorySolenoidal vector fieldGeodesicisospectral manifoldsDynamical Systems (math.DS)Inverse problemSobolev spaceRigidity (electromagnetism)Mathematics - Analysis of PDEsmath.DGDifferential Geometry (math.DG)conjugate-pointsBundleGeodesic flowFOS: MathematicsGeometry and TopologyMathematics - Dynamical SystemsAnalysismath.APmath.DSMathematicsAnalysis of PDEs (math.AP)description
This article considers inverse problems on closed Riemannian surfaces whose geodesic flow is Anosov. We prove spectral rigidity for any Anosov surface and injectivity of the geodesic ray transform on solenoidal 2-tensors. We also establish surjectivity results for the adjoint of the geodesic ray transform on solenoidal tensors. The surjectivity results are of independent interest and imply the existence of many geometric invariant distributions on the unit sphere bundle. In particular, we show that on any Anosov surface $(M,g)$, given a smooth function $f$ on $M$ there is a distribution in the Sobolev space $H^{-1}(SM)$ that is invariant under the geodesic flow and whose projection to $M$ is the given function $f$.
year | journal | country | edition | language |
---|---|---|---|---|
2014-08-01 |