6533b83afe1ef96bd12a705b

RESEARCH PRODUCT

The one loop gluon emission light cone wave function

Tuomas LappiTuomas LappiRisto PaatelainenRisto Paatelainen

subject

COLLISIONSParticle physicsNuclear TheoryRENORMALIZATIONQUANTUM ELECTRODYNAMICSGeneral Physics and AstronomyFOS: Physical sciencesloop calculations114 Physical sciences01 natural scienceslight cone perturbation theoryRenormalizationNuclear Theory (nucl-th)Dimensional regularizationHigh Energy Physics - Phenomenology (hep-ph)INFINITE-MOMENTUMLight cone0103 physical sciencesSCATTERINGHelicity basis010306 general physicsNuclear ExperimentQuantum chromodynamicsPhysicsCoupling constantgluon emissionta114010308 nuclear & particles physicsCOLOR GLASS CONDENSATEDeep inelastic scatteringFRONT QCDHelicityEVOLUTIONHigh Energy Physics - PhenomenologyCHROMODYNAMICSQuantum electrodynamicsgluon saturation

description

Light cone perturbation theory has become an essential tool to calculate cross sections for various small-$x$ dilute-dense processes such as deep inelastic scattering and forward proton-proton and proton-nucleus collisions. Here we set out to do one loop calculations in an explicit helicity basis in the four dimensional helicity scheme. As a first process we calculate light cone wave function for one gluon emission to one-loop order in Hamiltonian perturbation theory on the light front. We regulate ultraviolet divergences with transverse dimensional regularization and soft divergences with using a cut-off on longitudinal momentum. We show that when all the renormalization constants are combined, the ultraviolet divergences can be absorbed into the standard QCD running coupling constant, and give an explicit expression for the remaining finite part.

https://dx.doi.org/10.48550/arxiv.1611.00497