6533b83afe1ef96bd12a7947

RESEARCH PRODUCT

Supplementary Ultraviolet-B Radiation Induces a Rapid Reversal of the Diadinoxanthin Cycle in the Strong Light-Exposed DiatomPhaeodactylum tricornutum 

Heiko MewesMichael Richter

subject

LightUltraviolet RaysPhysiologyPlant ScienceXanthophyllsBiologyPhotosynthesisThylakoidsDithiothreitolchemistry.chemical_compoundGeneticsPhaeodactylum tricornutumDiatomsDiadinoxanthinDiatoxanthinDarknessHydrogen-Ion ConcentrationAscorbic acidbiology.organism_classificationAdaptation PhysiologicalDithiothreitolBiochemistrychemistryThylakoidPhotoprotectionBiophysicsOxidoreductasesSignal TransductionResearch Article

description

AbstractA treatment of the diatom Phaeodactylum tricornutum with high light (HL) in the visible range led to the conversion of diadinoxanthin (Dd) to diatoxanthin (Dt). In a following treatment with HL plus supplementary ultraviolet (UV)-B, the Dt was rapidly epoxidized to Dd. Photosynthesis of the cells was inhibited under HL + UV-B. This is accounted for by direct damage by UV-B and damage because of the UV-B-induced reversal of the Dd cycle and the associated loss of photoprotection. The reversal of the Dd cycle by UV-B was faster in the presence of dithiothreitol, an inhibitor of the Dd de-epoxidase. Our results imply that the reversal of the Dd cycle by HL + UV-B was caused by an increase in the rate of gross Dt epoxidation, whereas the de-epoxidation of Dd was unaffected by UV-B. This is further supported by our finding that the in vitro de-epoxidation activity and the affinity toward the cosubstrate ascorbic acid of the Dd de-epoxidase were both unaffected by UV-B pretreatment of intact cells. We provide evidence that Dt epoxidation is normally down-regulated by a high pH gradient under HL. It is proposed that supplementary UV-B affected the pH gradient across the thylakoid membrane, which disrupted the down-regulation of Dt epoxidation and led to the observed increase in the rate of Dt epoxidation.

https://doi.org/10.1104/pp.006775