6533b83afe1ef96bd12a7d5c

RESEARCH PRODUCT

Implementation of Building Information Modeling in Infrastructure Construction : Lessons from Norway and Vietnam

Nhat Nam Bui

subject

VDP::Teknologi: 500::Bygningsfag: 530VDP::Matematikk og Naturvitenskap: 400::Informasjons- og kommunikasjonsvitenskap: 420

description

Industrialization, innovation, and infrastructure are important drivers in improving employment and income (United Nations, 2015b). To meet the United Nation’s Sustainable Development Goals by 2030, developing countries need to invest more in research and innovation that aims to improve their infrastructure (United Nations, 2015a). More basic infrastructure, such as roads, information and communication technology (ICT) systems, and electrical power grids, is essential to improving standards of living and protecting the environment in developing countries (ibid.). Construction researchers have found that the use of ICT increases construction efficiency. Adwan and Al-Soufi (2016) classified 21 sets of ICT technologies used in construction, including web-based platforms, Building Information Modeling (BIM) based technologies, CAD- and 3D CAD–based technologies, virtual reality, and video conferencing. Among these, BIM is an information system that facilitates digital collaboration in construction. BIM provides an environment for data sharing based on 3D models, and it has been used to increase productivity and quality of building construction. In the context of transportation infrastructure, BIM reduces errors, provides better understandings of projects, and improves project performance (SmartMarket Report, 2017). In my construction industry experience, 3D modeling was applied to infrastructure projects that include roads, bridges, and railways. 3D models of infrastructure, such as that related to railways (stations and line alignments) and bridges, was used to detect design clashes and support communication with stakeholders. More broadly, BIM implementation is rapidly increasing in the context of infrastructure construction (Bradley et al., 2016), and examples include the integration of 3D infrastructure models with other technologies, such as geographic information systems, global positioning systems, laser scanners, and photogrammetry (Bradley et al., 2016; Costin et al., 2018). Researchers have also reported on BIM applications in different phases of the infrastructure life cycles (ibid.). In general, BIM supports infrastructure construction by reducing costs and risks and increasing reliability (Costin et al., 2018). The trend of rising use shows BIM’s potential to benefit the infrastructure sector. Infrastructure is critical if developing countries are to achieve their Sustainable Development Goals, which motivated me to explore BIM implementation in that context. Since developed countries is leading in BIM use, this thesis explores whether they can learn from the experiences of more advanced countries. To identify useful lessons, I conducted a comparative analysis of BIM implementation in a developed and a developing contexts. Moreover, BIM-related innovation communities were studied to understand how BIM practices can be further strengthened in infrastructure projects. This thesis focused on the following research question: “How can the implementation of Building Information Modelling be improved to support infrastructure projects in a developing context?”

10.1002/isd2.12128https://hdl.handle.net/11250/2757979