6533b850fe1ef96bd12a81af

RESEARCH PRODUCT

Structural diversity in charge transfer salts based on Mo3S7 and Mo3S4Se3 clusters complexes and bis(ethylenedithio)tetrathiafulvalene (ET)

Maxim N. SokolovAntonio AlberolaCristian VicentSonia TrigueroCarlos J. Gómez-garcíaRosa Llusar

subject

Valence (chemistry)ChemistryLigandStereochemistryDithiolGeneral ChemistryCrystal structureMetalchemistry.chemical_compoundCrystallographyOxidation statevisual_artMaterials Chemistryvisual_art.visual_art_mediumMoleculeTetrathiafulvalene

description

Chemical modification of the trinuclear [Mo3(μ3-S)(μ2-S2)3Br6]2− cluster, at either the outer bromine or the disulfide ligands, allows the facile preparation of the dianions [Mo3(μ3-S)(μ2-S2)3(tdas)3]2− ([1]2−) (tdas = 1,2,5-thiadiazole-3,4-dithiol), [Mo3(μ3-S)(μ2-SSe)3Br6]2− ([2]2−) and [Mo3(μ3-S)(μ2-S2)3Cl6]2− ([3]2−). Electrocrystallization of bis(ethylenedithio)tetrathiafulvalene (ET) in the presence of these dianions affords a series of charge transfer salts, namely (ETA)(ETB)[1], (ETA)(n-Bu4N)[2], (ETA)(ETB)[3]2·CH3CN, and ((ETA)(ETB)(ETC)(ETD))2{[3]2Cl}·CH3CN, where the ET subscripts denote crystallographically independent molecules. In all cases, the various cluster–cluster, cluster–donor and donor–donor interactions give rise to rich structural diversity in the inorganic and organic sublattices. Raman spectroscopy has been used to account for the degree of charge transfer in the organic donor ET. The ET molecules are oxidized to the integral 1+ oxidation state in compounds (ETA)(ETB)[1] and (ET)(n-Bu4N)[2] and to the integral value of 2+ in compound (ETA)(ETB)[3]2·CH3CN. Their transport properties reveal semiconducting behaviour with a room temperature conductivity of 4 × 10−5 S· cm−1 and an activation energy of 280 meV for compound (ETA)(ETB)[1] while the other two compounds are insulators. Non-integer values less than 1+ are observed for ((ETA)(ETB)(ETC)(ETD))2{[3]2Cl}·CH3CN which shows metallic behavior at high temperatures with an irreversible transition to an activated conductivity at ca. 270 K.

https://doi.org/10.1039/b703551a