6533b850fe1ef96bd12a8391
RESEARCH PRODUCT
Reconstruction from boundary measurements for less regular conductivities
Andoni Garc��aGuo Zhangsubject
Mathematics - Analysis of PDEs35R30Inverse conductivity problemCalderón problemAstrophysics::High Energy Astrophysical PhenomenaBourgain's spaceFOS: MathematicsMathematics::Analysis of PDEsDirichlet-to-Neumann mapMathematics::Spectral TheoryBoundary integral equationAnalysis of PDEs (math.AP)description
In this paper, following Nachman's idea and Haberman and Tataru's idea, we reconstruct $C^1$ conductivity $\gamma$ or Lipchitz conductivity $\gamma$ with small enough value of $|\nabla log\gamma|$ in a Lipschitz domain $\Omega$ from the Dirichlet-to-Neumann map $\Lambda_{\gamma}$. In the appendix the authors and R. M. Brown recover the gradient of a $C^1$-conductivity at the boundary of a Lipschitz domain from the Dirichlet-to-Neumann map $\Lambda_{\gamma}$.
year | journal | country | edition | language |
---|---|---|---|---|
2012-12-04 |