6533b850fe1ef96bd12a84ae
RESEARCH PRODUCT
MiR-221 promotes stemness of breast cancer cells by targeting DNMT3b
Matilde TodaroDanilo FioreCristina QuintavalleIlaria PuotiMiriam GaggianesiCarlo M. CroceMargherita IaboniGiuseppina RoscignoManel EstellerGerolama CondorelliAngel Diaz-lagaresG. CortinoValentina RussoRenato ThomasElvira DonnarummaGiulia Romanosubject
cancer stem cells0301 basic medicineMicro RNAsCellular differentiationADNDNMTStem cellsStem cell markermedicine.disease_causeBioinformaticsMCF-7 Cell0302 clinical medicineBreast cancerHEK293 CellTumor Cells CulturedDNA (Cytosine-5-)-MethyltransferasesOligonucleotide Array Sequence AnalysisMicroscopy ConfocalReverse Transcriptase Polymerase Chain ReactionMicroRNAHomeodomain ProteinNanog Homeobox ProteinmicroRNAsGene Expression Regulation NeoplasticOncology030220 oncology & carcinogenesisMCF-7 CellsNeoplastic Stem CellsRNA InterferenceCèl·lules mareBreast NeoplasmResearch PaperHumanHomeobox protein NANOGBlotting WesternBreast NeoplasmsBiologyCàncer de mama03 medical and health sciencesmicroRNAs breast cancer cancer stem cells DNMTBreast cancerCancer stem cellCell Line TumorSpheroids CellularmedicineHumansHomeodomain ProteinsOligonucleotide Array Sequence AnalysiCancer stem cellGene Expression ProfilingCancerDNAmedicine.diseaseMolecular medicineMicroRNAsHEK293 Cells030104 developmental biologyDNA (Cytosine-5-)-MethyltransferaseCancer researchNeoplastic Stem CellCarcinogenesisOctamer Transcription Factor-3description
// Giuseppina Roscigno 1, 2 , Cristina Quintavalle 1, 2 , Elvira Donnarumma 3 , Ilaria Puoti 1 , Angel Diaz-Lagares 4 , Margherita Iaboni 1 , Danilo Fiore 1 , Valentina Russo 1 , Matilde Todaro 5 , Giulia Romano 6 , Renato Thomas 7 , Giuseppina Cortino 7 , Miriam Gaggianesi 5 , Manel Esteller 4 , Carlo M. Croce 6 , Gerolama Condorelli 1, 2 1 Department of Molecular Medicine and Medical Biotechnology, “Federico II” University of Naples, Naples, Italy 2 IEOS-CNR, Naples, Italy 3 IRCCS-SDN, Naples, Italy 4 Epigenetic and Cancer Biology Program (PEBC) IDIBELL, Hospital Duran I Reynals, Barcelona, Spain 5 Department of Surgical and Oncological Sciences, Cellular and Molecular Pathophysiology Laboratory, University of Palermo, Palermo, Italy 6 Department of Molecular Virology, Immunology and Medical Genetics, Human Cancer Genetics Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA 7 Department of Surgical and Oncology, Clinica Mediterranea, Naples, Italy Correspondence to: Gerolama Condorelli, e-mail: gecondor@unina.it Keywords: microRNAs, breast cancer, cancer stem cells, DNMT Received: June 15, 2015 Accepted: October 09, 2015 Published: October 19, 2015 ABSTRACT Cancer stem cells (CSCs) are a small part of the heterogeneous tumor cell population possessing self-renewal and multilineage differentiation potential as well as a great ability to sustain tumorigenesis. The molecular pathways underlying CSC phenotype are not yet well characterized. MicroRNAs (miRs) are small noncoding RNAs that play a powerful role in biological processes. Early studies have linked miRs to the control of self-renewal and differentiation in normal and cancer stem cells. We aimed to study the functional role of miRs in human breast cancer stem cells (BCSCs), also named mammospheres. We found that miR-221 was upregulated in BCSCs compared to their differentiated counterpart. Similarly, mammospheres from T47D cells had an increased level of miR-221 compared to differentiated cells. Transfection of miR-221 in T47D cells increased the number of mammospheres and the expression of stem cell markers. Among miR-221’s targets, we identified DNMT3b. Furthermore, in BCSCs we found that DNMT3b repressed the expression of various stemness genes, such as Nanog and Oct 3/4 , acting on the methylation of their promoters, partially reverting the effect of miR-221 on stemness. We hypothesize that miR-221 contributes to breast cancer tumorigenicity by regulating stemness, at least in part through the control of DNMT3b expression.
year | journal | country | edition | language |
---|---|---|---|---|
2016-01-01 |