6533b850fe1ef96bd12a855c

RESEARCH PRODUCT

Models for preterm cortical development using non invasive clinical EEG

Helmut ScheuJürgen BergelerJürgen BergelerBernd LecherFlorian HenseNora Vanessa De CampNora Vanessa De CampNora Vanessa De Camp

subject

0301 basic medicineBrain developmentsomatosensory cortexmouse modelContext (language use)Neurosciences. Biological psychiatry. NeuropsychiatryBiologyElectroencephalographySomatosensory system600 Technik Medizin angewandte Wissenschaften::610 Medizin und Gesundheit::616 KrankheitenInterhemispheric coherence03 medical and health sciences0302 clinical medicine616medicineCoherence (signal processing)cortical developmentmedicine.diagnostic_testGeneral Neurosciencephase amplitude couplingNon invasivetelemetrycoherence030104 developmental biologypigletfull band eegpretermNeuroscience030217 neurology & neurosurgeryPhase amplitude couplingRegular ArticlesRC321-571

description

AbstractThe objective of this study was to evaluate the piglet and the mouse as model systems for preterm cortical development. According to the clinical context, we used non invasive EEG recordings. As a prerequisite, we developed miniaturized Ag/AgCl electrodes for full band EEG recordings in mice and verified that Urethane had no effect on EEG band power. Since mice are born with a “preterm” brain, we evaluated three age groups: P0/P1, P3/P4 and P13/P14. Our aim was to identify EEG patterns in the somatosensory cortex which are distinguishable between developmental stages and represent a physiologic brain development. In mice, we were able to find clear differences between age groups with a simple power analysis of EEG bands and also for phase locking and power spectral density. Interhemispheric coherence between corresponding regions can only be seen in two week old mice. The canolty maps for piglets as well as for mice show a clear PAC (phase amplitude coupling) pattern during development. From our data it can be concluded that analytic tools relying on network activity, as for example PAC (phase amplitude coupling) are best suited to extract basic EEG patterns of cortical development across species.

10.1515/tnsci-2017-0029https://doaj.org/article/f48a24ce6f734a668e74ab651b5078d4