6533b850fe1ef96bd12a8566

RESEARCH PRODUCT

The evolution of nitric oxide signalling diverges between the animal and the green lineages

Jérôme SantoliniJeremy AstierDavid WendehenneSylvain JeandrozArnaud Mounier

subject

[SDE] Environmental Sciences0106 biological sciencesAlgaePhysiologyLineage (evolution)[SDV]Life Sciences [q-bio]RegulatorPlant ScienceSignalling01 natural sciencesNitric oxideEvolution Molecular03 medical and health scienceschemistry.chemical_compoundcyclic nucleotide-gated channel[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyAnimals[SDV.BV] Life Sciences [q-bio]/Vegetal BiologyPhosphodiesteraseCyclic GMPComputingMilieux_MISCELLANEOUS030304 developmental biology0303 health sciencesCGMPbiologyMechanism (biology)KinaseNitric oxide synthaseNitric oxidePlantPlantsGuanylate cyclaseCell biology[SDV] Life Sciences [q-bio]Nitric oxide synthaseSignallingchemistrycGMP-dependent protein kinase[SDE]Environmental Sciencesbiology.proteincGMP-dependent protein kinase010606 plant biology & botanySignal Transduction

description

AbstractNitric oxide (NO) is a ubiquitous signalling molecule with widespread distribution in prokaryotes and eukaryotes where it is involved in countless physiological processes. While the mechanisms governing nitric oxide (NO) synthesis and signalling are well established in animals, the situation is less clear in the green lineage. Recent investigations have shown that NO synthase, the major enzymatic source for NO in animals, is absent in land plants but present in a limited number of algae. The first detailed analysis highlighted that these new NO synthases are functional but display specific structural features and probably original catalytic activities. Completing this picture, analyses were undertaken in order to investigate whether major components of the prototypic NO/cyclic GMP signalling cascades mediating many physiological effects of NO in animals were also present in plants. Only a few homologues of soluble guanylate cyclases, cGMP-dependent protein kinases, cyclic nucleotide-gated channels, and cGMP-regulated phosphodiesterases were identified in some algal species and their presence did not correlate with that of NO synthases. In contrast, S-nitrosoglutathione reductase, a critical regulator of S-nitrosothiols, was recurrently found. Overall, these findings highlight that plants do not mediate NO signalling through the classical NO/cGMP signalling module and support the concept that S-nitrosation is a ubiquitous NO-dependent signalling mechanism.

10.1093/jxb/erz088https://hal-agrosup-dijon.archives-ouvertes.fr/hal-02065043