6533b850fe1ef96bd12a85f8

RESEARCH PRODUCT

Multivariate GARCH estimation via a Bregman-proximal trust-region method

Juan-pablo OrtegaStéphane Chrétien

subject

Statistics and ProbabilityMathematical optimizationPolynomialComputer scienceDiagonalComputational Finance (q-fin.CP)[QFIN.CP]Quantitative Finance [q-fin]/Computational Finance [q-fin.CP]FOS: Economics and businessQuantitative Finance - Computational FinanceDimension (vector space)0502 economics and business91G70 65C60050207 economicsMathematics050205 econometrics Trust regionStatistical Finance (q-fin.ST)Series (mathematics)Applied Mathematics05 social sciencesConstrained optimizationQuantitative Finance - Statistical Finance[QFIN.ST]Quantitative Finance [q-fin]/Statistical Finance [q-fin.ST]Computational MathematicsNonlinear systemComputational Theory and MathematicsParametrizationCurse of dimensionality

description

The estimation of multivariate GARCH time series models is a difficult task mainly due to the significant overparameterization exhibited by the problem and usually referred to as the "curse of dimensionality". For example, in the case of the VEC family, the number of parameters involved in the model grows as a polynomial of order four on the dimensionality of the problem. Moreover, these parameters are subjected to convoluted nonlinear constraints necessary to ensure, for instance, the existence of stationary solutions and the positive semidefinite character of the conditional covariance matrices used in the model design. So far, this problem has been addressed in the literature only in low dimensional cases with strong parsimony constraints. In this paper we propose a general formulation of the estimation problem in any dimension and develop a Bregman-proximal trust-region method for its solution. The Bregman-proximal approach allows us to handle the constraints in a very efficient and natural way by staying in the primal space and the Trust-Region mechanism stabilizes and speeds up the scheme. Preliminary computational experiments are presented and confirm the very good performances of the proposed approach.

http://arxiv.org/pdf/1101.5475