6533b851fe1ef96bd12a8da8

RESEARCH PRODUCT

Are AuPdTM (T = Sc, Y and M = Al, Ga, In), Heusler Compounds Superconductors without Inversion Symmetry?

Jürgen WinterlikGerhard H. FecherFelix MendeClaudia FelserLinus Kautzsch

subject

Materials sciencePoint reflection02 engineering and technologyElectronic structureCentrosymmetry01 natural scienceslcsh:TechnologyArticlenon-centrosymmetric0103 physical sciencesGeneral Materials Science010306 general physicslcsh:Microscopylcsh:QC120-168.85Superconductivitylcsh:QH201-278.5lcsh:Tsuperconductivity021001 nanoscience & nanotechnologyelectronic structureCrystallographylcsh:TA1-2040lcsh:Descriptive and experimental mechanicslcsh:Electrical engineering. Electronics. Nuclear engineering0210 nano-technologyValence electronlcsh:Engineering (General). Civil engineering (General)Heusler compoundslcsh:TK1-9971Stoichiometry

description

Heusler compounds with 2:1:1 stoichiometry either have a centrosymmetric Cu 2 MnAl structure or an Li 2 AgSb structure without a centre of inversion. The centrosymmetry is always lost in quaternary Heusler compounds with 1:1:1:1 stoichiometry and LiMgPdSn structure. This presents the possibility of realizing non-centrosymmetric superconductors in the family of Heusler compounds. The objective of this study is to search for and investigate such quaternary derivatives of Heusler compounds, particularly with respect to superconductivity. Several compounds were identified by carrying out calculations from first principles and superconductivity was observed in experiments conducted on AuPdScAl and AuPtScIn at the critical temperatures of 3.0 and 0.96 K, respectively. All investigated compounds had a valence electron count of 27, which is also the case in centrosymmetric Heusler superconductors.

10.3390/ma12162580https://www.mdpi.com/1996-1944/12/16/2580