6533b851fe1ef96bd12a8f15
RESEARCH PRODUCT
Solutions and positive solutions for superlinear Robin problems
Francesca VetroCalogero VetroNikolaos S. Papageorgiousubject
Pure mathematicsnonlinear maximum principle010102 general mathematicsMathematics::Analysis of PDEssuperlinear reactionStatistical and Nonlinear PhysicsMultiplicity (mathematics)01 natural sciencesTerm (time)Nonlinear systempositive solutionSettore MAT/05 - Analisi Matematica0103 physical sciencesNonhomogeneous differential operatornonlinear regularity010307 mathematical physics0101 mathematicscritical groupsMathematical PhysicsMathematicsdescription
We consider nonlinear, nonhomogeneous Robin problems with a (p − 1)-superlinear reaction term, which need not satisfy the Ambrosetti-Rabinowitz condition. We look for positive solutions and prove existence and multiplicity theorems. For the particular case of the p-Laplacian, we prove existence results under a different geometry near the origin.We consider nonlinear, nonhomogeneous Robin problems with a (p − 1)-superlinear reaction term, which need not satisfy the Ambrosetti-Rabinowitz condition. We look for positive solutions and prove existence and multiplicity theorems. For the particular case of the p-Laplacian, we prove existence results under a different geometry near the origin.
year | journal | country | edition | language |
---|---|---|---|---|
2019-10-01 | Journal of Mathematical Physics |