6533b851fe1ef96bd12a8f81

RESEARCH PRODUCT

Searches for atmospheric long-lived particles

Carlos ArguellesPilar ColomaVíctor MuñozPilar Hernández

subject

Nuclear and High Energy PhysicsParticle physicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic ray01 natural sciences7. Clean energyHigh Energy Physics - ExperimentStandard ModelHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesNeutrino Physicslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsGauge symmetryPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyFunction (mathematics)High Energy Physics - PhenomenologyNeutrino detectorBeyond Standard Modellcsh:QC770-798High Energy Physics::ExperimentSolar and Atmospheric NeutrinosNeutrinoProduction rateLepton

description

Long-lived particles are predicted in extensions of the Standard Model that involve relatively light but very weakly interacting sectors. In this paper we consider the possibility that some of these particles are produced in atmospheric cosmic ray showers, and their decay intercepted by neutrino detectors such as IceCube or Super-Kamiokande. We present the methodology and evaluate the sensitivity of these searches in various scenarios, including extensions with heavy neutral leptons in models of massive neutrinos, models with an extra $U(1)$ gauge symmetry, and a combination of both in a $U(1)_{B-L}$ model. Our results are shown as a function of the production rate and the lifetime of the corresponding long-lived particles.

10.1007/jhep02(2020)190http://link.springer.com/article/10.1007/JHEP02(2020)190