6533b851fe1ef96bd12a8f82

RESEARCH PRODUCT

Direct synthesis of dimethyl carbonate with supercritical carbon dioxide: characterization of a key organotin oxide intermediate

Philippe RichardHelka TurunenRiitta L. KeiskiRosane Angélica LigabueLaurent PlasseraudStéphane ChambreyDanielle Ballivet-tkatchenko

subject

Reaction mechanismdibutyldimethoxystannaneSupercritical carbon dioxide010405 organic chemistryInorganic chemistryorganotin oxide[ CHIM.INOR ] Chemical Sciences/Inorganic chemistryGeneral Chemistry[CHIM.INOR]Chemical Sciences/Inorganic chemistry010402 general chemistry01 natural sciencesStannaneCatalysisSupercritical fluid0104 chemical sciencesCatalysischemistry.chemical_compoundcarbon dioxide–methanol phase diagramschemistrysupercritical carbon dioxideReagentdimethyl carbonateMethanolDimethyl carbonateComputingMilieux_MISCELLANEOUS

description

The direct synthesis of dimethyl carbonate (DMC) using carbon dioxide as solvent and reagent for its fixation to methanol was explored with din-butyldimethoxystannane in order to get insight into the reaction mechanism for activity improvement. Catalytic runs including recycling experiments allowed isolation and characterization by NMR, IR, and single-crystal X-ray diffraction of a new tin complex containing 10 tin atoms. This compound could be prepared independently and is considered as a resting species. The yield of DMC is highest under 20 MPa pressure that fits with a monophasic supercritical medium in agreement with fluid phase equilibria calculations. In line, preliminary kinetics and initial rate determination show a positive order in carbon dioxide and a first-order dependence on the stannane. The initial rates were lower with the deca-tin complex than with the stannane precursor, but the turnover numbers (TONs) were higher. Water, the co-product of the reaction, was found to reversibly poison the active centers. Its in situ trapping had a beneficial effect. This study provides new mechanistic clues as to the reactive species and DMC formation. Further kinetics work is in progress to determine the rate-limiting step(s) at the initial stage of the reaction for more active catalyst design. # 2006 Elsevier B.V. All rights reserved.

10.1016/j.cattod.2006.02.025https://hal.archives-ouvertes.fr/hal-00469867