6533b851fe1ef96bd12a97d1

RESEARCH PRODUCT

Quantum Walk Search on Johnson Graphs

Thomas G. Wong

subject

Statistics and ProbabilityQuantum PhysicsSpatial searchJohnson graphDegenerate energy levelsComplete graphFOS: Physical sciencesGeneral Physics and AstronomyStatistical and Nonlinear Physics01 natural sciencesGraph010305 fluids & plasmasCombinatoricsModeling and Simulation0103 physical sciencesQuantum walkQuantum Physics (quant-ph)010306 general physicsChange of basisMathematical PhysicsMathematicsofComputing_DISCRETEMATHEMATICSMathematics

description

The Johnson graph $J(n,k)$ is defined by $n$ symbols, where vertices are $k$-element subsets of the symbols, and vertices are adjacent if they differ in exactly one symbol. In particular, $J(n,1)$ is the complete graph $K_n$, and $J(n,2)$ is the strongly regular triangular graph $T_n$, both of which are known to support fast spatial search by continuous-time quantum walk. In this paper, we prove that $J(n,3)$, which is the $n$-tetrahedral graph, also supports fast search. In the process, we show that a change of basis is needed for degenerate perturbation theory to accurately describe the dynamics. This method can also be applied to general Johnson graphs $J(n,k)$ with fixed $k$.

10.1088/1751-8113/49/19/195303http://arxiv.org/abs/1601.04212