6533b851fe1ef96bd12a97d1
RESEARCH PRODUCT
Quantum Walk Search on Johnson Graphs
Thomas G. Wongsubject
Statistics and ProbabilityQuantum PhysicsSpatial searchJohnson graphDegenerate energy levelsComplete graphFOS: Physical sciencesGeneral Physics and AstronomyStatistical and Nonlinear Physics01 natural sciencesGraph010305 fluids & plasmasCombinatoricsModeling and Simulation0103 physical sciencesQuantum walkQuantum Physics (quant-ph)010306 general physicsChange of basisMathematical PhysicsMathematicsofComputing_DISCRETEMATHEMATICSMathematicsdescription
The Johnson graph $J(n,k)$ is defined by $n$ symbols, where vertices are $k$-element subsets of the symbols, and vertices are adjacent if they differ in exactly one symbol. In particular, $J(n,1)$ is the complete graph $K_n$, and $J(n,2)$ is the strongly regular triangular graph $T_n$, both of which are known to support fast spatial search by continuous-time quantum walk. In this paper, we prove that $J(n,3)$, which is the $n$-tetrahedral graph, also supports fast search. In the process, we show that a change of basis is needed for degenerate perturbation theory to accurately describe the dynamics. This method can also be applied to general Johnson graphs $J(n,k)$ with fixed $k$.
year | journal | country | edition | language |
---|---|---|---|---|
2016-01-16 |