6533b851fe1ef96bd12a97f9
RESEARCH PRODUCT
A SIMPLE PARTICLE MODEL FOR A SYSTEM OF COUPLED EQUATIONS WITH ABSORBING COLLISION TERM
Cédric BernardinValeria Riccisubject
Interacting particle systemsPhotonlarge numbers limitDimension (graph theory)FOS: Physical sciencesBoundary (topology)01 natural sciences010104 statistics & probabilityInteracting particle systems large numbers limit absorptionFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Absorption (logic)0101 mathematics[PHYS.COND.CM-SM]Physics [physics]/Condensed Matter [cond-mat]/Statistical Mechanics [cond-mat.stat-mech]Condensed Matter - Statistical MechanicsPhysicsParticle systemNumerical AnalysisRange (particle radiation)Partial differential equationStatistical Mechanics (cond-mat.stat-mech)Probability (math.PR)010102 general mathematicsMathematical analysis[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]Modeling and SimulationProduct measure82C22 82C21 60F05 60K35absorptionMathematics - Probabilitydescription
We study a particle model for a simple system of partial differential equations describing, in dimension $d\geq 2$, a two component mixture where light particles move in a medium of absorbing, fixed obstacles; the system consists in a transport and a reaction equation coupled through pure absorption collision terms. We consider a particle system where the obstacles, of radius $\var$, become inactive at a rate related to the number of light particles travelling in their range of influence at a given time and the light particles are instantaneously absorbed at the first time they meet the physical boundary of an obstacle; elements belonging to the same species do not interact among themselves. We prove the convergence (a.s. w.r.t. the product measure associated to the initial datum for the light particle component) of the densities describing the particle system to the solution of the system of partial differential equations in the asymptotics $ a_n^d n^{-\kappa}\to 0$ and $a_n^d \var^{\zeta}\to 0$, for $\kappa\in(0,\frac 12)$ and $\zeta\in (0,\frac12 - \frac 1{2d})$, where $a_n^{-1}$ is the effective range of the obstacles and $n$ is the total number of light particles.
year | journal | country | edition | language |
---|---|---|---|---|
2011-01-01 |