6533b851fe1ef96bd12a980f
RESEARCH PRODUCT
Double β Decay and the Axial Strength
Jouni SuhonenJoel Kostensalosubject
Semileptonic decayHigh Energy Physics::LatticeMaterials Science (miscellaneous)Nuclear TheoryBiophysicsGeneral Physics and Astronomydouble beta decay01 natural sciencesDouble beta decay0103 physical sciencesBeta (velocity)Physical and Theoretical Chemistry010306 general physicsMathematical PhysicsPhysicsQuenchingRange (particle radiation)Gamow-Teller beta decayta114Electron spectradigestive oral and skin physiologyCharge (physics)electron spectral shapeslcsh:QC1-999quenching of weak axial couplingPseudoscalarenhancement of weak axial chargeforbidden beta decayAtomic physicsydinfysiikkalcsh:Physicsdescription
Quenching of the weak axial strength gA is discussed and relations of this quenching to the nuclear matrix elements of double beta decays are highlighted. An analysis of Gamow-Teller transitions in the mass range A = 62 − 142 is presented and its results are compared with those of many previous works. The enhancement of the axial charge is discussed for first-forbidden pseudoscalar β transitions. Higher-forbidden β transitions are introduced and their role in determining the effective value of gA is examined, in particular from the point of view of the β-decay half-lives and the shapes of electron spectra of forbidden non-unique β transitions. peerReviewed
year | journal | country | edition | language |
---|---|---|---|---|
2019-01-01 |