6533b851fe1ef96bd12a9a32
RESEARCH PRODUCT
Double-spanning Plant Viral Movement Protein Integration into the Endoplasmic Reticulum Membrane Is Signal Recognition Particle-dependent, Translocon-mediated, and Concerted
Jesus SalgadoAna SauríIsmael MingarroSuraj SaksenaArthur E. JohnsonArthur E. Johnsonsubject
BioquímicaSec61Vesicle-associated membrane protein 8Receptors PeptideLipid BilayersReceptors Cytoplasmic and NuclearBiologyEndoplasmic ReticulumBiochemistryViral ProteinsMembranes (Biologia)Escherichia coliMolecular BiologySignal recognition particle receptorSignal recognition particleMembrane GlycoproteinsEndoplasmic reticulumCalcium-Binding ProteinsMembrane ProteinsSTIM1Cell BiologyTransloconTransmembrane proteinCell biologyPlant Viral Movement ProteinsCross-Linking ReagentsMutagenesisRNA ViralCarmovirusSignal Recognition ParticleSEC Translocation Channelsdescription
The current model for cell-to-cell movement of plant viruses holds that transport requires virus-encoded movement proteins that intimately associate with endoplasmic reticulum membranes. We have examined the early stages of the integration into endoplasmic reticulum membranes of a double-spanning viral movement protein using photocross-linking. We have discovered that this process is cotranslational and proceeds in a signal recognition particle-dependent manner. In addition, nascent chain photocross-linking to Sec61alpha and translocating chain-associated membrane protein reveal that viral membrane protein insertion takes place via the translocon, as with most eukaryotic membrane proteins, but that the two transmembrane segments of the viral protein leave the translocon and enter the lipid bilayer together.
year | journal | country | edition | language |
---|---|---|---|---|
2005-01-01 |