0000000000215412
AUTHOR
Ana Saurí
Viral membrane protein topology is dictated by multiple determinants in its sequence.
The targeting, insertion, and topology of membrane proteins have been extensively studied in both prokaryotes and eukaryotes. However, the mechanisms used by viral membrane proteins to generate the correct topology within cellular membranes are less well understood. Here, the effect of flanking charges and the hydrophobicity of the N-terminal hydrophobic segment on viral membrane protein topogenesis are examined systematically. Experimental data reveal that the classical topological determinants have only a minor effect on the overall topology of p9, a plant viral movement protein. Since only a few individual sequence alterations cause an inversion of p9 topology, its topological stability …
Membrane insertion and topology of the p7B movement protein of Melon Necrotic Spot Virus (MNSV)
AbstractCell-to-cell movement of the Melon Necrotic Spot Virus (MNSV) is controlled by two small proteins working in trans, an RNA-binding protein (p7A) and an integral membrane protein (p7B) separated by an amber stop codon. p7B contains a single hydrophobic region. Membrane integration of this region was observed when inserted into model proteins in the presence of microsomal membranes. Furthermore, we explored the topology and targeting mechanisms of full-length p7B. Here we present evidence that p7B integrates in vitro into the ER membrane cotranslationally and with an Nt-cytoplasmic/Ct-luminal orientation. The observed topology was monitored in vivo by fusing GFP to the Ct of p7B, enab…
Membrane protein integration into the endoplasmic reticulum
Most integral membrane proteins are targeted, inserted and assembled in the endoplasmic reticulum membrane. The sequential and potentially overlapping events necessary for membrane protein integration take place at sites termed translocons, which comprise a specific set of membrane proteins acting in concert with ribosomes and, probably, molecular chaperones to ensure the success of the whole process. In this minireview, we summarize our current understanding of helical membrane protein integration at the endoplasmic reticulum, and highlight specific characteristics that affect the biogenesis of multispanning membrane proteins.
Transient structural ordering of the RNA-binding domain of carnation mottle virus p7 movement protein modulates nucleic acid binding.
Plant viral movement proteins bind to RNA and participate in the intra- and intercellular movement of the RNAs from plant viruses. However, the role and magnitude of the conformational changes associated with the formation of RNA-protein complexes are not yet defined. Here we describe studies on the relevance of a preexisting nascent alpha-helix at the C terminus of the RNA-binding domain of p7, a movement protein from carnation mottle virus, to RNA binding. Synthetic peptide analogues and single amino acid mutation at the RNA-binding domain of recombinant p7 protein were used to correlate the transient structural order in aqueous solution with RNA-binding potential.
Mutational analysis of the RNA-binding domain of the Prunus necrotic ringspot virus (PNRSV) movement protein reveals its requirement for cell-to-cell movement.
AbstractThe movement protein (MP) of Prunus necrotic ringspot virus (PNRSV) is required for cell-to-cell movement. MP subcellular localization studies using a GFP fusion protein revealed highly punctate structures between neighboring cells, believed to represent plasmodesmata. Deletion of the RNA-binding domain (RBD) of PNRSV MP abolishes the cell-to-cell movement. A mutational analysis on this RBD was performed in order to identify in vivo the features that govern viral transport. Loss of positive charges prevented the cell-to-cell movement even though all mutants showed a similar accumulation level in protoplasts to those observed with the wild-type (wt) MP. Synthetic peptides representin…
Double-spanning Plant Viral Movement Protein Integration into the Endoplasmic Reticulum Membrane Is Signal Recognition Particle-dependent, Translocon-mediated, and Concerted
The current model for cell-to-cell movement of plant viruses holds that transport requires virus-encoded movement proteins that intimately associate with endoplasmic reticulum membranes. We have examined the early stages of the integration into endoplasmic reticulum membranes of a double-spanning viral movement protein using photocross-linking. We have discovered that this process is cotranslational and proceeds in a signal recognition particle-dependent manner. In addition, nascent chain photocross-linking to Sec61alpha and translocating chain-associated membrane protein reveal that viral membrane protein insertion takes place via the translocon, as with most eukaryotic membrane proteins, …
Insertion and Topology of a Plant Viral Movement Protein in the Endoplasmic Reticulum Membrane
Virus-encoded movement proteins (MPs) mediate cell-to-cell spread of viral RNA through plant membranous intercellular connections, the plasmodesmata. The molecular pathway by which MPs interact with viral genomes and target plasmodesmata channels is largely unknown. The 9-kDa MP from carnation mottle carmovirus (CarMV) contains two potential transmembrane domains. To explore the possibility that this protein is in fact an intrinsic membrane protein, we have investigated its insertion into the endoplasmic reticulum membrane. By using in vitro translation in the presence of dog pancreas microsomes, we demonstrate that CarMV p9 inserts into the endoplasmic reticulum without the aid of any addi…
Sec61alpha and TRAM are Sequentially Adjacent to a Nascent Viral Membrane Protein during its ER Integration
Co-translational integration of a nascent viral membrane protein into the endoplasmic reticulum membrane takes place via the translocon. We have been studying the early stages of the integration of a double-spanning plant viral movement protein to gain insights into how viral membrane proteins are transferred from the hydrophilic interior of the translocon into the hydrophobic environment of the bilayer, where the transmembrane (TM) segments of the viral proteins can diffuse freely. Photocrosslinking experiments reveal that this integration involves the sequential passage of the TM segments past Sec61alpha and translocating chain-associating membrane protein (TRAM). Each TM segment is first…
RNA-binding properties and membrane insertion of Melon necrotic spot virus (MNSV) double gene block movement proteins
AbstractAdvances in structural and biochemical properties of carmovirus movement proteins (MPs) have only been obtained in p7 and p9 from Carnation mottle virus (CarMV). Alignment of carmovirus MPs revealed a low conservation of amino acid identity but interestingly, similarity was elevated in regions associated with the functional secondary structure elements reported for CarMV which were conserved in all studied proteins. Nevertheless, some differential features in relation with CarMV MPs were identified in those from Melon necrotic virus (MNSV) (p7A and p7B). p7A was a soluble non-sequence specific RNA-binding protein, but unlike CarMV p7, its central region alone could not account for t…