6533b851fe1ef96bd12aa0fc

RESEARCH PRODUCT

Solution of time-independent Schrödinger equation by the imaginary time propagation method

Jari ToivanenJussi ElorantaLauri Lehtovaara

subject

Numerical AnalysisPhysics and Astronomy (miscellaneous)DiscretizationApplied MathematicsMathematical analysisMathematicsofComputing_NUMERICALANALYSISOrder (ring theory)Computer Science::Human-Computer InteractionComputer Science ApplicationsSchrödinger equationComputational Mathematicssymbols.namesakeLanczos resamplingShared memoryModeling and SimulationConvergence (routing)symbolsScalingEigenvalues and eigenvectorsMathematics

description

Numerical solution of eigenvalues and eigenvectors of large matrices originating from discretization of linear and non-linear Schrodinger equations using the imaginary time propagation (ITP) method is described. Convergence properties and accuracy of 2nd and 4th order operator-splitting methods for the ITP method are studied using numerical examples. The natural convergence of the method is further accelerated with a new dynamic time step adjustment method. The results show that the ITP method has better scaling with respect to matrix size as compared to the implicitly restarted Lanczos method. An efficient parallel implementation of the ITP method for shared memory computers is also demonstrated.

https://doi.org/10.1016/j.jcp.2006.06.006