6533b851fe1ef96bd12aa12f

RESEARCH PRODUCT

Fixed point methods and accretivity for perturbed nonlinear equations in Banach spaces

Jesús Garcia-falsetOmar Muñiz-pérez

subject

Pure mathematicsApplied MathematicsOperator (physics)010102 general mathematicsBanach spaceFixed-point theoremFixed point01 natural sciences010101 applied mathematicsNonlinear systemBoundary value problemUniqueness0101 mathematicsLaplace operatorAnalysisMathematics

description

Abstract In this paper we use fixed point theorems to guarantee the existence of solutions for inclusions of the form A u + λ u + F u ∋ g , where A is a quasi-m-accretive operator defined in a Banach space, λ > 0 , and the nonlinear perturbation F satisfies some suitable conditions. We apply the obtained results, among other things, to guarantee the existence of solutions of boundary value problems of the type − Δ ρ ( u ( x ) ) + λ u ( x ) + F u ( x ) = g ( x ) , x ∈ Ω , and ρ ( u ) = 0 on ∂Ω, where the Laplace operator Δ should be understood in the sense of distributions over Ω and to study the existence and uniqueness of solution for a nonlinear integro-differential equation posed in L 1 ( Ω ) .

https://doi.org/10.1016/j.jmaa.2020.124168