6533b851fe1ef96bd12aa12f
RESEARCH PRODUCT
Fixed point methods and accretivity for perturbed nonlinear equations in Banach spaces
Jesús Garcia-falsetOmar Muñiz-pérezsubject
Pure mathematicsApplied MathematicsOperator (physics)010102 general mathematicsBanach spaceFixed-point theoremFixed point01 natural sciences010101 applied mathematicsNonlinear systemBoundary value problemUniqueness0101 mathematicsLaplace operatorAnalysisMathematicsdescription
Abstract In this paper we use fixed point theorems to guarantee the existence of solutions for inclusions of the form A u + λ u + F u ∋ g , where A is a quasi-m-accretive operator defined in a Banach space, λ > 0 , and the nonlinear perturbation F satisfies some suitable conditions. We apply the obtained results, among other things, to guarantee the existence of solutions of boundary value problems of the type − Δ ρ ( u ( x ) ) + λ u ( x ) + F u ( x ) = g ( x ) , x ∈ Ω , and ρ ( u ) = 0 on ∂Ω, where the Laplace operator Δ should be understood in the sense of distributions over Ω and to study the existence and uniqueness of solution for a nonlinear integro-differential equation posed in L 1 ( Ω ) .
year | journal | country | edition | language |
---|---|---|---|---|
2020-09-01 | Journal of Mathematical Analysis and Applications |