6533b852fe1ef96bd12aa395
RESEARCH PRODUCT
Synaptogenesis in the mouse olfactory bulb during glomerulus development
Juan A. De CarlosMiriam RomagueraJosé Manuel García-verdugoLaura López-mascaraqueAlbert Blanchartsubject
Olfactory systemNeuropilTime FactorsPhalloidineSynaptic MembranesSynaptogenesisGAP-43Nerve Tissue ProteinsBiologymitral cellsSynaptic TransmissionOlfactory Receptor NeuronsMiceGAP-43 ProteinOlfactory MucosaOlfactory nerveolfactory sensory neuronsNeuropilmedicineAnimalsGlomerulus (olfaction)Membrane GlycoproteinsGeneral NeuroscienceSV-2Cell DifferentiationDendritesOlfactory BulbOlfactory bulbmedicine.anatomical_structureSynapsesembryonic structuresSynaptic VesiclesOlfactory ensheathing gliaolfactory epitheliumsense organsNeuroscienceOlfactory epitheliumBiomarkersdescription
Synaptogenesis is essential for the development of neuronal networks in the brain. In the olfactory bulb (OB) glomeruli, numerous synapses must form between sensory olfactory neurons and the dendrites of mitral/tufted and periglomerular cells. Glomeruli develop from E13 to E16 in the mouse, coincident with an increment of the neuropil in the border between the external plexiform (EPL) and olfactory nerve layers (ONL), coupled to an extensive labelling of phalloidin and GAP-43 from the ONL to EPL. We have tracked synaptogenesis in the OB during this period by electron microscopy (EM) and immunolabelling of the transmembrane synaptic vesicle glycoprotein SV-2. No SV-2 labelling or synapses were detected at E13, although electrodense junctions lacking synaptic vesicles could be observed by EM. At E14, sparse SV-2 labelling appears in the most ventral and medial part of the incipient OB, which displays a ventro-dorsal gradient by E15 but covers the entire OB by E16. These data establish a spatio-temporal pattern of synaptogenesis, which perfectly matches with the glomeruli formation in developing OB. © The Authors (2008).
year | journal | country | edition | language |
---|---|---|---|---|
2008-01-01 |