6533b852fe1ef96bd12aa3cf

RESEARCH PRODUCT

Stability of chiral geometry in the odd–odd Rh isotopes: spectroscopy of 106Rh

C. VamanG. RainovskiK. StarostaA. R. WilkinsonE. S. PaulJozsef MolnarD. CurienG. DuchêneD. SohlerR. WadsworthPankaj S. JoshiJ. TimárTakeshi KoikeAnthony J. H. SimonsZs. DombrádiJ. GizonP. BednarczykA. KrasznahorkayJ. N. ScheurerL. ZolnaiP. M. RaddonA. GizonD. G. JenkinsA. AlgoraD. B. Fossan

subject

CouplingPhysicsNuclear and High Energy PhysicsIsotopeSpectrometer010308 nuclear & particles physicsYrast[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesStability (probability)Charged particle0103 physical sciencesQuasiparticleAtomic physics010306 general physicsSpectroscopyNuclear Experiment

description

International audience; 136 P. Joshi et al. / Physics Letters B 595 (2004) 135–142AbstractThe nucleus 106Rh was populated using the reaction 96Zr(13C, p2n) at a beam energy of 51 MeV. γ -ray transitions wereidentified using the EUROBALL-IV γ -ray spectrometer and the DIAMANT charged particle array. The yrast band, which isbased upon a πg−19/2 ⊗ νh11/2 configuration, has been extended to I π = (22−). A new I = 1 band has been identified whichresides ∼ 300 keV above the yrast band. Core–quasiparticle coupling model calculations show reasonably good agreement withthe data. The properties of the two pairs of strongly coupled bands are consistent with a chiral interpretation for these states. 2004 Elsevier B.V

10.1016/j.physletb.2004.05.066http://dx.doi.org/10.1016/j.physletb.2004.05.066