6533b852fe1ef96bd12aac3e

RESEARCH PRODUCT

ErbB-3 activation by NRG-1β sustains growth and promotes vemurafenib resistance in BRAF-V600E colon cancer stem cells (CSCs)

Stefano IacobelliValentina IacobelliGianluca SalaEmily CaponeAntonina BenfanteSilvia VolpeCosmo RossiVincenzo De LaurenziSander R. Van HooffJan Paul MedemaDaniela D'agostinoDaniela BarcaroliPramudita R. Prasetyanti

subject

Proto-Oncogene Proteins B-rafMAPK/ERK pathwayIndolesReceptor ErbB-3Colorectal cancerNeuregulin-1colon cancer stem cellsMice NudeAntineoplastic AgentsMiceErbBErbB-3medicineAnimalsHumansNeuregulin 1VemurafenibClonogenic assayskin and connective tissue diseasesProtein kinase BneoplasmsPI3K/AKT/mTOR pathwayCell ProliferationOligonucleotide Array Sequence AnalysisNRG-1βSulfonamidesbiologyReverse Transcriptase Polymerase Chain Reactionbusiness.industryFlow Cytometrymedicine.diseaseImmunohistochemistryXenograft Model Antitumor AssaysVemurafenibOncologyDrug Resistance NeoplasmColonic NeoplasmsImmunologyNeoplastic Stem CellsCancer researchbiology.proteinbusinessPriority Research Papermedicine.drug

description

Approximately 5-10% of metastatic colorectal cancers harbor a BRAF-V600E mutation, which is correlated with resistance to EGFR-targeted therapies and worse clinical outcome. Vice versa, targeted inhibition of BRAF-V600E with the selective inhibitor PLX 4032 (Vemurafenib) is severely limited due to feedback re-activation of EGFR in these tumors. Mounting evidence indicates that upregulation of the ErbB-3 signaling axis may occur in response to several targeted therapeutics, including Vemurafenib, and NRG-1β-dependent re-activation of the PI3K/AKT survival pathway has been associated with therapy resistance. Here we show that colon CSCs express, next to EGFR and ErbB-2, also significant amounts of ErbB-3 on their membrane. This expression is functional as NRG-1β strongly induces AKT/PKB and ERK phosphorylation, cell proliferation, clonogenic growth and promotes resistance to Vemurafenib in BRAF-V600E mutant colon CSCs. This resistance was completely dependent on ErbB-3 expression, as evidenced by knockdown of ErbB-3. More importantly, resistance could be alleviated with therapeutic antibody blocking ErbB-3 activation, which impaired NRG-1β-driven AKT/PKB and ERK activation, clonogenic growth in vitro and tumor growth in xenograft models. In conclusion, our findings suggest that targeting ErbB-3 receptors could represent an effective therapeutic approach in BRAF-V600E mutant colon cancer.

http://www.scopus.com/inward/record.url?eid=2-s2.0-84938267296&partnerID=MN8TOARS