6533b852fe1ef96bd12aac7d

RESEARCH PRODUCT

Transcriptome Response of Metallicolous and a Non-Metallicolous Ecotypes of Noccaea goesingensis to Nickel Excess

Katarzyna TurnauMagdalena Hubalewska-mazgajRoman J. JędrzejczykAgnieszka DomkaCristina GonnelliFederico MartinelliJubina BennyRafał WażnyPiotr RozpądekMarkus Puschenreiter

subject

0106 biological sciences0301 basic medicineNoccaea goesingensisPopulationecotypeschemistry.chemical_elementPlant ScienceBiology01 natural sciencesArticleShoot biomassTranscriptome03 medical and health scienceslcsh:Botanynickel (Ni)BotanyeducationGeneEcology Evolution Behavior and Systematicseducation.field_of_studytoleranceEcologyEcotypeEthylene metabolismlcsh:QK1-989Nickel030104 developmental biologychemistryShoot<i>Noccaea goesingensis</i>transcriptome010606 plant biology & botany

description

Root transcriptomic profile was comparatively studied in a serpentine (TM) and a non-metallicolous (NTM) population of Noccaea goesingensis in order to investigate possible features of Ni hyperaccumulation. Both populations were characterised by contrasting Ni tolerance and accumulation capacity. The growth of the TM population was unaffected by metal excess, while the shoot biomass production in the NTM population was significantly lower in the presence of Ni in the culture medium. Nickel concentration was nearly six- and two-fold higher in the shoots than in the roots of the TM and NTM population, respectively. The comparison of root transcriptomes using the RNA-seq method indicated distinct responses to Ni treatment between tested ecotypes. Among differentially expressed genes, the expression of IRT1 and IRT2, encoding metal transporters, was upregulated in the TM population and downregulated/unchanged in the NTM ecotype. Furthermore, differences were observed among ethylene metabolism and response related genes. In the TM population, the expression of genes including ACS7, ACO5, ERF104 and ERF105 was upregulated, while in the NTM population, expression of these genes remained unchanged, thus suggesting a possible regulatory role of this hormone in Ni hyperaccumulation. The present results could serve as a starting point for further studies concerning the plant mechanisms responsible for Ni tolerance and accumulation.

https://doi.org/10.3390/plants9080951