6533b852fe1ef96bd12aadfa

RESEARCH PRODUCT

Gradient estimates for solutions to quasilinear elliptic equations with critical sobolev growth and hardy potential

Chang-lin Xiang

subject

Work (thermodynamics)General Mathematicsmedia_common.quotation_subject010102 general mathematicsMathematical analysisGeneral Physics and AstronomyInfinity01 natural sciences010101 applied mathematicsSobolev spaceContinuationMathematics - Analysis of PDEs35J60 35B33FOS: Mathematics0101 mathematicsHardy's inequalityGradient estimateAnalysis of PDEs (math.AP)Mathematicsmedia_common

description

This note is a continuation of the work \cite{CaoXiangYan2014}. We study the following quasilinear elliptic equations \[ -\Delta_{p}u-\frac{\mu}{|x|^{p}}|u|^{p-2}u=Q(x)|u|^{\frac{Np}{N-p}-2}u,\quad\, x\in\mathbb{R}^{N}, \] where $1<p<N,0\leq\mu<\left((N-p)/p\right)^{p}$ and $Q\in L^{\infty}(\R^{N})$. Optimal asymptotic estimates on the gradient of solutions are obtained both at the origin and at the infinity.

https://doi.org/10.1016/s0252-9602(16)30115-1