6533b852fe1ef96bd12ab5ad
RESEARCH PRODUCT
Optical absorption and electron paramagnetic resonance of theEα′center in amorphous silicon dioxide
Gianpiero BuscarinoFranco Mario GelardiSimonpietro AgnelloRoberto Boscainosubject
Materials scienceOscillator strengthCenter (category theory)Condensed Matter PhysicsCrystallographic defectMolecular electronic transitionElectronic Optical and Magnetic Materialslaw.inventionFull width at half maximumParamagnetismCrystallographylawAbsorption (logic)Atomic physicsElectron paramagnetic resonancedescription
We report a combined study by optical absorption (OA) and electron paramagnetic resonance (EPR) spectroscopy on the E{sub {alpha}}{sup '} point defect in amorphous silicon dioxide (a-SiO{sub 2}). This defect has been studied in {beta}-ray irradiated and thermally treated oxygen-deficient a-SiO{sub 2} materials. Our results have pointed out that the E{sub {alpha}}{sup '} center is responsible for an OA Gaussian band peaked at {approx}5.8 eV and having a full width at half maximum of {approx}0.6 eV. The estimated oscillator strength of the related electronic transition is {approx}0.14. Furthermore, we have found that this OA band is quite similar to that of the E{sub {gamma}}{sup '} center induced in the same materials, indicating that the related electronic transitions involve states highly localized on a structure common to both defects: the O{identical_to}Si{sup {center_dot}} moiety.
year | journal | country | edition | language |
---|---|---|---|---|
2008-04-28 | Physical Review B |